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Abstract—Power consumption imposes a significant cost for ~ This paper makes three contributions: First, we analyical
data centers implementing cloud services, yet much of thatgwer  characterize the optimal offline solution (Section Il1). Yfeve

is used to maintain excess service capacity during periodsf o that it exhibits a simple, ‘lazy’ structure when viewed in
predictably low load. This paper investigates how much can & reverse time

saved by dynamically ‘right-sizing’ the data center by turning off . . .
servers during such periods, and how to achieve that savingiz ~ Second, we introduce and analyze a novel, practical online
an online algorithm. We prove that the optimal offline algorithm  algorithm motivated by this structure (Section 1V). Thealg

for dynamic right-sizing has a simple structure when viewedin  rithm, namedLazy Capacity Provisioning (LCR(), uses a

reverse time, and this structure is exploited to develop a e  ragiction window of lengtho of future arrivals and mimics
lazy’ online algorithm, which is proven to be 3-competitive. We

validate the algorithm using traces from two real data cente 1€ 'azy’ structure of the optimal algorithm, but procewgli
workloads and show that significant cost-savings are posdia forward instead of backwards in time. We prove that LGP(
is 3-competitive, i.e., its cost is at most 3 times that of the
|. INTRODUCTION optimal offline solution. This is regardless of the workload
and for very general energy and delay cost models, even when
Energy costs represent a significant fraction of a daia information is used about arrivals beyond the currenetim
center's budget [1] and this fraction is expected to grow @sriod (v = 0). Further, in practice, LCRY) is far better than
the price of energy increases in coming years. Hence, thgteompetitive, incurring nearly the optimal cost.
is a growing push to improve the energy efficiency of the Third, we validate our algorithm using two load traces
data centers behind cloud computing. A guiding focus feffom Hotmail and a Microsoft Research data center) to
research into ‘green’ data centers is the goal of designiggaluate the cost savings achieved via dynamic rightgizin
data centers that are ‘power-proportional’, i.e., use pamy in practice (Section V). We show that significant savings
in proportion to the load. However, current data centers ajfe possible under a wide range of settings and that savings
far from this goal — even today’s energy-efficient data centyecome dramatic when the workload is predictable over an
consume almost half of their peak power when nearly idle [Zhterval proportional to the toggling cost. The magnituéiehe
A promising approach for making data centers more powgotential savings depend primarily on the peak-to-meaip rat
proportional is using software to dynamically adapt the bem (PMR) of the workload, with a PMR of 5 being enough to give
of active servers to match the current workload, i.e., BD% energy saving and 40% total cost saving even for quite
dynamically ‘right-size’ the data center. Specificallyndynic bursty workloads. In the context of these real traces, we als
right-sizing refers to adapting the way requests are diteat discuss when it does and when it does not make sense to use
to servers in the data center so that, during periods of l@ynamic right-sizing versus the alternative of ‘valleyifity’,
load, servers that are not needed do not have jobs routeddg using periods of low load to run background/mainteean
them and thus are allowed to enter a power-saving mode (exgsks. We find that dynamic right-sizing provides more than
go to sleep or shut down). 15% cost savings even when the background work makes up
Technologies that implement dynamic right-sizing ard st} 40% of the workload when the PMR is larger than 3.
far from standard in data centers due to a number of chal-
lenges. First, servers must be able to seamlessly tramgitio Il. M ODEL FORMULATION
and out of power saving modes while not losing their state.We now describe the model we use to explore the cost
There has been a growing amount of research into enablisig #ivings possible via dynamic right-sizing. The assumgtion
in recent years, dealing with virtual machine state [3]wwek used in the model are minimal and capture many properties
state [4] and storage state [5], [6]. Second, such techriqeg current data centers and traces we have obtained. Althoug
must prove to be reliable, since administrators we talk toryvo we focus on single application environment, the model may
about wear-and-tear consequences of such technologied, Tlve used to allocate resources to applications in a datarcente
and the challenge that this paper addresses, it is unclear lghich hosts multiple applications using virtual machines.
to determine how many servers to toggle into power-saving
mode and how to control servers and requests. A. The workload model
A goal of this paper is to provide a new algorithm to addressWe consider a discrete-time model where the timeslot length
this third challenge. To this end, we develop a simple bmtatches the timescale at which the data center can adjust its
general model that captures the major issues that affect tla@acity. There is a (possibly long) time-interval of ietstr
design of a right-sizing algorithm, including: the costsfio¢ € {0,1,...,T}. The mean arrival rate for sldtis denoted
revenue) associated with the increased delay from usingrfewy \;. For convenience, we enforce that= 0 for all ¢ <0
servers, the energy cost of maintaining an active servdr waétnd allt > 7. We assume that the job interarrival times are
a particular load, and the cost incurred from toggling aeervnuch shorter than the timeslot, so that provisioning can be
into and out of a power-saving mode (including the delalgased on the average arrival rate during a slot. In practice,
energy, and wear-and-tear costs). could be a year and a slotcould be 10 minutes.



The analytic results of Sections Ill and IV assume that the The switching cost3, models the cost of toggling a server
workload has a finite duration, i.&' < oo, but make no back-and-forth between active and power-saving modes. The
other assumptions abouwy, i.e., A; can be arbitrary. Thus, constant3 includes the costs of (i) the energy used toggling
the analytic results provide worst-case guarantees. Henvewa server, (ii) the delay in migrating connections/data/@q.,
to provide realistic cost estimates, we consider casdedud via VM techniques) when toggling a server, (iii) increased

Section V where)\, is defined using real-world traces. wear-and-tear on the servers toggling, and (iv) the risk-ass
ciated with server toggling. If only (i) and (ii) matter, the
B. The data center cost model is on the order of the cost to run a server for a few seconds

We model a data center as a collection of homogened¥@king from suspend-to-RAM) or migrating network statg [4
serverst We focus on two important decisions for the dat@l Storage state [5], to several minutes (to migrate a large
center: (i) determining:;, the number of active servers during/M [3]). However, if (iii) is included, then3 becomes on the
each time slot, and (i) assigning arriving jobs to servers, i.eorder of the cost to run a server for an hour [12]. Finally, if
determining); ;, the arrival rate to server at timet. (Note (iv)is considered then our conversations with operatoggest
thathil Ait = Ar.) The data center wants to chooseand that their perc_elve_d risk that servers will not turn on prbype
;. to minimize the cost durinl, T]. Our model for the cost When toggled is high, s6 may be many hours’ server costs.
focuses on the server costs of the data cénter. Note that this model ignores many issues surrounding re-

We model the cost of a server by (i) the operating codf@bility and availability, which are key components of dat
incurred by an active server and (i) the switching costs §§nter service level agreements (SLAs). In practice, disolu
toggle a server into and out of a power-saving mode (e_gw_gt_ toggles servers must still maintain the reliabilitydan
off/on or sleeping/waking). Both components include egergVvailability guarantees. For example, if data is replidateee
and delay costs. iImes and two copies fail while the third is asleep, the th|r.d

The operating costsare modeled by a convex functior€OPY must |mmed|ately_ be woken. Modeling _such failures is
F(Aie), which is the same for all servers. The convexi eyond the scope of th!s paper, however previous work shows
assumption is quite general and captures many common seHjgk solutions are possible [S].
models. One example of a convex cost model is a weighted L
sum of delay costs and energy costsk; ;, d)+e(\;.;), where C. The data center optimization problem
r(\i ¢, d) is the revenue lost given delayand arrival rate\; 4, Given the cost models above, the goal of the data center is
and e()\;) is the energy cost of an active server handling choose the number of active servegsand the dispatching
arrival rate \; ;. One common model of the energy cost fofule \; ; to minimize the total cost duringl, 7], which is
typical servers is an affine function(\;:) = eo + e1Xi: captured by the following optimization:
where ey and e; are constants; e.g., see [7]. The lost rev- P -
enue is more difficult to model. One natural model for it N 4
is r(Nit,d) = diii(d — do)t where dy is the minimum minimize sz()‘i*t) +ﬁ2(xt —z-1)" ()
delay users can detect ari¢ is a constant. This measures the t=1i=1 m‘i_l
perceived delay weighted by the fraction of users expeiignc - _ ~y
that delay. Further, the average delay can be modeled using subject o 0.< Ai¢ <land Y A=A,
standard queuing theory results. For example, if the server ) _ o
happens to be modeled by an M/GI/1 Processor Shari{fere the constraink;; < 1 is a result of normalizing the
queue thend = 1/(1 — \;), where the service rate of thearrival rate, without loss of generality, such that an airiate

server is assumed to be 1 without loss of generality [8]. TRé 1 IS the largest that a server can stabilize. Note that we
combination of these models gives model the cosf3 of toggling a server as being incurred when

the server is returned to an active state. Though the datarcen
seeks to solve (2), it must do so in anline manner, i.e, at
time 7, it does not have full information about for ¢ > 7.

. In the remainder of this section we simplify the form of (2)
The above is one example that conyéx) can capture, but by noting that, ifz, is fixed, then the remaining optimization

the results .hOId for any convex mOdel of operating cc@the_r for \;; is convex. Thus, we can use the KKT conditions to
examples include, for instance, using the 99th percenfllegeg :

=1

+
Fie) = didiyg (1 S do) +(eo+etriy) (1)
— it

delay instead of the mean. In fact, if the server happens to termine the optimal dispatching rulg,. This yields that

X =\, = -+ = \t/x¢, which implies that once; is fixed
modeled by an M/M/1 Processor Sharing queue then the 9 optimal dispatching rule is to “load balance” across the

percentile islog(100)/(1 — A), and so the form of (1) doesse vers. Given that load balancing is always optimal, we can

not change [8]. Similarly, when servers use dynamic spegd-ou X . . ;
. ; , s ple dispatchingh(:) from capacity planninga(,), and
scaling, if the energy cost is modeled as polynomial in speg: plify (2) into purely a capacity planning optimization:

as in [9], then the aggregate coft:) remains convex [10],

[11]. Note that, in practicef(-) can be empirically measured o T T
by observing the system over time. minimize > " af(\e/w) + B Y (2 — 1)t (3)
t=1 t=1
IMultiple classes of servers may be incorporated at the cbsidded subject to x> N\

notational complexity. . . . L
2Minimizing server energy consumption also reduces cooting power It IS this formulation of the data center optimization thag w

distribution costs [2]. focus on for the remainder of the paper. Note thagf(\;/z;)



is the perspective function of the convex functigft), thus < 2% — x 200 —

it is alpso (?onvex. Therefore, (3) is a convexﬁobp)timizatioé 150 x—\_ é 150 sl tocﬂgl

problem forx;. Throughout, denote the ogerating cost of 2 100 | \ 2 w0} 3

vector X = (z1,...,x7) by costo(X) = >, xef(Ne/xe), g sol [ L g % |j ‘s\\

costs(X) = B (zi—xs1) T, andcost(X) = costo(X)+ 2 o=t | B olert ST

costs(X). o ® 1in%g t(holusrs) 0% o 0 tin%g l(holusrs) 0%
Formulation (3) makes two important simplifications. First (a) Offline optimal (b) LCP(0)

it does not enforce that; be integer valued. This is acceptablgig. 1. Iilustrations of (a) the offline optimal solution arid) LCP(0) for
since the number of servers in a typical data center is large. first day of the MSR workload described in Section V withampling
Second, it does not enforce an upper bound on the numpssied of 20 minutes. The operating cost is defined by (1) wigh= 1.5,
of servers active at time However, a bound oiV(t) servers @ =1 # =1 co=1ande; =0 and the switching cost has = 8.

can easily be imposed by defining the operating cost tocbe
instead ofx, f (A, /xz,) for z, > N(t). The results in this paper
also apply to that model.

Theorem 1 and Lemma 1 are proven in Appendix A.

An example of the optimat; can be seen in Figure 1(a).
Many more numeric examples of the performance of the
[1l. THE OPTIMAL OFFLINE SOLUTION optimal offline algorithm are provided in Section V.

Given the data center optimization problem, the first natura ' n€orem 1 and Figure 1(a) highlight that the optimal algo-
task is to characterize the optimal offline solution, i.&g t ''thm can be interpreted as moving backwards in time, sigrti
optimal solution given access to the the full vectonpf The With 27 = 0 and keepingz? = 27, unless the bounds
insight provided by the characterization of the offline optm Prohibit this, in which case it makes the smallest possible
motivates the formulation of our online algorithm. change. An important point highlighted by this interprietat

It turns out that there is a simple characterization of tti@ that it is impossible for an online algorithm to compute
optimal offline solution to the data center optimization fpro SINC&; without knowledge of the future, an online algorithm
lem, X* in terms of two bounds on the optimal solutiofg@nnot know whether to keep, constant or to follow the
which correspond to chargingcost either when a server goe&'PPer/lower bound.
into power-saving mode or when comes out. The optinjal IV. LAZY CAPACITY PROVISIONING

can be viewed as ‘lazily’ staying within these bounds goin . Lo . . .
y ying g gA major contribution of this paper is the presentation and

backwards in time. vsis of enline alaorithm. Lazy C i Provisi
More formally, let us first describe upper and lower boun@a{%ﬁo ag(:\i. nlneLaC%OH Iin azy la)\pE?CIy <rOV'S'°n'
on .y, denotedr, anduy, respectively. Lear,,.. .. 27,) :‘r(])?s(ome@;gdictil)nr]ﬁ/vTiﬁdom(w&epeov\\:\/seogsgutrngrtﬁla_t Ew—gge are
be the solution vector to the following optimization prafle known perfectly, but we show in Section V that the algorithm
L u i is robust to this assumption in practice. The design of LQP(
+
minimize thf(/\t/xt) + 52(% —i-1)" (4 is motivated by the structure of the optimal offline solution
t=1 t=1 described in Section Ill. Like the optimal solution, it “ia2

subject to z; > A stays within upper and lower bounds. However, it does this
Then, definer” = zL_. Similarly, let (zU,,...,2U_) be the moving forward in time instead of backwards in time.
solution vector to the following optimization problem Before defining LCP{) formally, recall that the bounds

andxL do not use knowledge about the loads in the prediction

L - - N window of LCP(w). To use it, define refined bound§"* and
minimize ;xtf(/\t/xt)+ﬁ;(xt_l )" ) prw guch thatzUv = 22U in the solution of (5) and

T T+w,T
Lw _ L i Uo _ U Lo _
subject to z; > A, a:sz = 271, inthat of (4). Note that:? 0=l andzy 0= _
_ x;. The following generalization of Lemma 1 is proven in
Then, definer? =2 . Appendix B.

Notice that in each case, the optimization problem includes I Iw . U U
only times1 < ¢ < 7, and so ignores the arrival informatior-8mma 2. oz <" < a7 <a" < z; forall w > 0.
for ¢ > 7. In the case of the lower boungd, cost is incurred  Now, we are ready to define LCR)Y usingz¥-* andzZ.
for each server toggled on, while in the upper boufid;ost ) ) S
is incurred for each server toggled into power-saving modeAlgorithm 1. Lazy Capacity Provisioning, LCP(w).
Lo U Let XLCP(w) — (zECPM) " G LOP)) qenote the vector
Lemma 1. For all 7, 27 < 27 < a7. of active servers under LCR}. This vector can be calculated

Given Lemma 1, we now characterize the optimal solutitsing the following forward recurrence relation

Ty Define (x)? = max(min(z,b),a) as the projection ofs 0, 7 <0;
into [a, b]. Then, we have: gLCPw) — { ( ch(w))zfvw o @)
Theorem 1. The optimal solutionX* = (zf, ..., z%) of the T aper 0 F
data center optimization problem (3) satisfies the follawin Figure 1(b) illustrates the behavior of LCP(0). Note its
backward recurrence relation similarity with Figure 1(a), but with the laziness in forwiar
0 > T time instead of reverse time. o
o* = ’ LU - 6 The computational demands of LGB(may initially seem
7 { (@7p1)pr, T<T =1 prohibitive as grows, since calculating:U* and z%*
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Fig. 2. lllustration of the traces used for numerical exmpents. Fig. 3. Impact of overnight peak ifig. 4. Impact of prediction error on
the Hotmail workload. LCP(w) under Hotmail workload.

requires solving convex optimizations of size-w. However,
it is possible to calculateeV* and z£-* without using the
full history. Lemma 9 in Appendix B implies that it is enough Throughout the experimental setup, our aim is to choose
to use only the history since the most recent point when thgrameters that provide conservative estimates of the cost
solutions of (4) and (5) are either both increasing or bo#avings from LCPg) and right-sizing in general.
decreasing, if such a point exists. In practice, this peiod  Cost benchmarkCurrent data centers typically do not use
typically less than a day due to diurnal traffic patterns, smd gynamic right-sizing and so to provide a benchmark against
the convex optimization, and hence L@R}(remains tractable which LCP) is judged, we consider the cost incurred by
even asr grows. a ‘static’ right-sizing scheme for capacity provisioninthis
Next, consider the cost incurred by LGH( Section V chooses a constant number of servers that minimizes the cost
discusses the cost in realistic settings, while in thisisectincurred based on full knowledge of the entire workload .sThi
we focus on worst-case bounds. In particular, we derivepalicy is clearly not possible in practice, but it providesexy
competitive ratio. We say that an algorithmGscompetitiveif ~ conservative estimate of the savings from right-sizingseiit
for all problem instances (all convex cost functions andéiniyses perfect knowledge of all peaks and eliminates the need
arrival rate vectors), the cost of the algorithm is less than for overprovisioning in order to handle the possibility afsh
times the cost of the optimal offline solution. The followingrowds or other traffic bursts.
theorem is proven in Appendix B. Cost function parametersThe cost is characterized by the

Theorem 2. cost(XLCP®)) < cost(X*)+2costs(X*). Thus, four parameters of (1), d1, eg ande;, and the switching

LCP(w) is 3-competitive for optimization (3). Further, for anyc0St #- We choose units such that the fixed energy cost is

finite w and e > 0 there exists an instance such that Lafp( ¢ = 1. The load-dependent energy consumption is set to
attains a cost greater thaf — e times the optimal cost. e; = 0, because the energy consumption of current servers

is dominated by the fixed costs [2].

Note that Theorem 2 says that the competitive ratio is in-The delay costd; reflects revenue lost due to customers
dependent of any parameters of the model, e.g., the predictieing deterred by delay, or to violation of SLAs. We set
window sizew, the switching cosi3, and the form of the d; /ey = 1 for most experiments but consider a wide range
operating cost functiori(\). Surprisingly, this means that everof settings in Figure 7. The minimum perceptible delay is set
the “myopic” LCP(0) is 3-competitive, regardless of thenat to dy = 1.5 times the time to serve a single job. The value 1.5
vector, despite having no information about arrivals be&yive is realistic or even conservative, since “valley filling” pexi-
current timeslot. It is also surprising that the compegitiatio ments similar to those of Section V-B show that a smallerevalu
is tight regardless ab. Seemingly, for largev, LCP(w) should would result in a significant added cost when valley filling,
provide reduced costs. Indeed, for any particular workloagihich operators now do with minimal incremental cost.
as w grows the cost decreases and eventually matches th&he normalized switching cogt/e, measures the duration a
optimal. However, for any fixed, there is a worst-case arrivalserver must be powered down to outweigh the switching cost.
sequence and cost function such that the competitive ratioNe uses = 6, which corresponds to the energy consumption
arbitrarily close to 3. for one hour (six samples). This was chosen as an estimate

Finally, though 3-competitive may seem like a large gap, tle¢ the time a server should sleep so that the wear-and-tear of
fact thatcost(XLOP()) < cost(X*)+2cost,(X*) highlights power cycling matches that of operating [12].
that the gap will tend to be much smaller in practice, whereworkload information:The workloads for these experiments
the switching costs make up a small fraction of the total<ogfre drawn from two real-world data center traces. The first se
since dynamic right-sizing would tend to toggle serverseongf traces is from Hotmail, a large email service running arste

A. Experimental setup

a day due to the diurnal traffic. of thousands of servers. We used /O traces from 8 such server
over a 48-hour period, starting at midnight (PDT) on Monday
V. CASE STUDIES August 4 2008 [5]. The second set of I/O traces is taken from

6 RAID volumes at MSR Cambridge. The traced period was

In this section our goal is two-fold: First, we seek to evédual week starting from 5PM GMT on the 22nd February 2007
the cost incurred by LCR() relative to the optimal solution [5]. Thus, these activity traces represent a service used by
in the context of realistic workloads. Second, more geheralmillions of users and a small service used by hundreds of
we seek to illustrate the cost savings and energy savings thgers. The traces are normalized to the peak load, which are
come from dynamic right-sizing in data centers. To accoshplishown in Figure 2. Both sets of traces show strong diurnal
these goals, we experiment using two real-world traces. properties and have peak-to-mean ratios (PMRs) of 1.64 and
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and energy cost incurred by LGP in the Hotmail workload.

4.64 for Hotmail and MSR respectively. Loads were averaged
over disjoint 10 minute intervals. that this myopic algorithm provides significant gain ovextist

The Hotmail trace contains significant nightly activity du@rovisioning is encouraging. Further, a prediction windbat
to maintenance processes (backup, index creation etc). Thapproximately the size gf = 6 (i.e. one hour) gives nearly
data center, however, is provisioned for the peak foregiouie optimal cost savings.
activity. This creates a dilemma: should our experimentsimpact of peak-to-mean ratio (PMRPynamic right-sizing
include the maintenance activity or to remove it? Figure iBherently exploits the gap between the peaks and valleys of
illustrates the impact of this decision. If the spike is ie¢al, the workload, and intuitively provides larger savings aatth
it makes up nearly 12% of the total load and forces the stafi@P grows. Figure 6 illustrates that this intuition holds fo
provisioning to use a much larger number of servers thanbigth cost savings and energy savings. The gain grows quickly
it were removed, making savings from dynamic right-sizingom zero at PMR=1, to 5-10% at PMR2 which is common

much more dramatic. To provide conservative estimateseof ii large data centers, to very large values for the higher
savings from right-sizing, we chose to trim the size of tHeMRs common in small to medium sized data centers. This

spike to minimize the savings from right-sizing. shows that, even for small data centers where the overhead
Prediction error: The LCP(v) algorithm depends on havingof implementing right-sizing is amortized over fewer sesve
estimates for the arrival rate during the current timeskt there is a significant benefit in doing so. To provide some
well as forw timeslots into the future. Our analysis in Sectiopontext for the monetary value of these savings, consid#r th
IV assumes that these estimates are perfect, but of coursé itypical 50,000 server data center has an electricity Bill o
practice there are prediction errors. However, Figure 4vshoaround $1 million/month [1]. _
that LCP(v) is fairly robust to prediction errors, and so this The workload for the figure is generated from the Hotmail
assumption is not problematic. In particular, the cost ctidn workload by scaling); as A\; = k(\;)*, varying a and
on the Hotmail trace, relative to a static scheme with fulidjusting & to keep the mean constant. Note that though
perfect, knowledge of the workload is still significant whefigure 6 includes only the results for Hotmail, the resgjtin
additive white Gaussian noise of increasing variance iedddlot for the MSR trace is nearly identical. This highlightsit
to predictions used by LCRY). The plot for the MSR trace the difference in cost savings observed between the twedrac
is qualitatively the same, however the cost savings is #dgtuds primarily due to the fact that the PMR of the MSR trace is
significantly larger. Given that prediction errors for reita S0 much larger than that of the Hotmail trace.
sets tend to be small [13], [14], based on these plots, tdmpact of energy costsClearly the benefit of dynamic

simplify our experiments we allow LCRY) perfect predictions. right-sizing is highly dependent on the cost of energy. As th
economy is forced to move towards more expensive renewable

B. When is right-sizing beneficial? energy sources, this cost will inevitably increase and gl
Our experiments are organized in order to illustrate tlsows how this increasing cost will affect the cost savings
impact of a wide variety of parameters on the cost-savingsessible from dynamic right-sizing. Note that the cost sgsi
provided by dynamic right-sizing via LCRJ. The goal is from dynamic right-sizing grow quickly as energy costs rise
to better understand when dynamic right-sizing can provitl®wever, even when energy costs are quite small relative to
large enough cost-savings to warrant the extra implementatdelay costs, we see improvement in the case of the MSR
complexity. Remember that throughout, we have attemptedworkload due to its large PMR.
choose experimental settings so that the benefit of dynami¢dmpact of switching costsOne of the main worries when
right-sizing is conservatively estimated. considering right-sizing is the switching cost of toggling
Impact of prediction window sizeThe first parameter we servers,3, which includes the delay costs, energy costs, costs
study is the impact of the predictability of the workload. lof wear-and-tear, and other risks involved. Thus, an ingotrt
particular, depending on the workload, the prediction wind question to address is: “How large must switching costs be
w for which accurate estimates can be made could be on before the cost savings from right-sizing disappears?”
order of tens of minutes or on the order of hours. Figure 5Figure 8 shows that significant gains are possible provided
illustrates the impact this has on the cost savings of LP( 5 is smaller than the duration of the valleys. Given that the
where the unit ofw is one timeslot which i90 minutes. energy costs, delay costs, and wear-and-tear costs afg like
The first observation from Figure 5 is that the savinge be on the order of an hour, this implies that unless the
possible in the MSR trace are larger than in the Hotmail tracesks associated with toggling a server are perceived to be
However, in both cases, a significant fraction of the optimektreme, the benefits from dynamic right-sizing are large in
cost savings is achieved by LCP(0), which uses only worklottte MSR trace (high PMR case). Though the gains are smaller
predictions about the current timesldato(minutes). The fact in the Hotmail case for larged, this is because the spike
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of background work splits an 8 hour valley into two short for dynamic right-sizing, but has an unbounded competitive
hour valleys. If these tasks were shifted or balanced athessratio for the model considered here.
valley, the Hotmail trace would show significant cost reéhict  The model and algorithm introduced in this paper most
for much largers, similarly to the MSR trace. closely ties to the online algorithms literature, specifica
Impact of valley filling: A common alternative to dynamicthe classic rent-or-buy (or “ski rental”) problem [29]. The
right-sizing that is often suggested is to run very delagptimal deterministic strategy for deciding when to turri of
insensitive maintenance/background processes duringehe a single idle server (i.e., to stop ‘renting’ and ‘buy’) iset&-
riods of low load, a.k.a., ‘valley filling’. Some applicatie competitive [30]. Additionally, there is a randomized aiigfam
have a huge amount of such background work, e.g., seandtich is asymptoticallye/(e — 1)-competitive [31]. Both of
engines tuning their ranking algorithms. If there is enoughese competitive ratios extend to the more general setting
such background work, the idea is that the valleys can petting a server in one of several sleep modes, with difteren
entirely filled and so the PMR1 and thus dynamic right- power consumption and transition costs [21]. An important
sizing is unnecessary. Thus, an important question is: “Halifference between these simple models and the current pape
much background work is enough to eliminate the cost savirigsthat the cost of the ‘buy’ and ‘rent’ actions may change
from dynamic right-sizing?” arbitrarily over time in the data center optimization perhl
Figure 9 shows that, in fact, dynamic right-sizing provideBroblems with this sort of dynamics typically have competit
cost savings even when background work makes up a sigtios greater than 2. For example, when rental prices vary i
nificant fraction of the total load. For the Hotmail tracetime, the competitive ratio is unbounded in general [32)-Fu
significant savings are still possible when background lodger, for “metrical task systems” [33]-[35], which genézal
makes upwards of 10% of the total load, while for the MSRent-or-buy problems and the data center optimizationlprab
trace this threshold becomes nearly 60%. Note that Figureéh@re are many algorithms available, but they typicallyehav
results from considering ‘ideal’ valley filling, which rel$&1 competitive ratios that are poly-logarithmic in the number
in a perfectly flat load during the valleys, but does not giwef servers. Perhaps the most closely related prior work from
background processes lower queueing priority. this area is the page-placement problem (deciding on which
VI. RELATED WORK server to store a file), which has competitive ratio 3 [36]eTh
) ] T } page replacement-problem is nearly a discrete versionef th
This paper is not alone in approaching the task of developiggta center optimization problem where the cost function is
algorithms for dynamic right-sizing. Interest in righsig restricted tof(x) = |« — 1|. Finally, it is important to note
has been growing since [15] and [16] appeared at the st LCP() is quite different than the classical algorithms
of the decade. Approaches range from very “analytic” wodgpplied for rent-or-buy problems.
focusing on developing algorithms with provable guarasitee
to “systems” work focusing purely on implementation. Early VII. SUMMARY AND CONCLUDING REMARKS
systems work such as [16] achieved substantial savingstdesp This paper has provided a new online algorithm, LGR(
ignored switching costs in their design. Other designs haiee dynamic right-sizing in data centers. The algorithm is
focused on decentralized frameworks, e.g., [17] and [18}otivated by the structure of the optimal offline solutiordan
as opposed to the centralized framework considered hereguarantees cost no larger than 3 times the optimal cost,runde
recent survey is [19]. very general settings — arbitrary workloads, general detst
Related analytic work focusing on dynamic right-sizinghodels, and general energy cost models. Further, in nealist
includes [20], which reallocates resources between tagkéw settings the cost of LCRY) is nearly optimal. Additionally,
a data center, and [21], which considers sleep of individuaCP(w) is simple to implement in practice and does not
components, among others. Typically, approaches havédpptequire significant computational overhead.
optimization using queueing theoretic models, e.g., [E23], Additionally, the case studies used to evaluate LEP(
or control theoretic approaches, e.g., [24]-[26]. A recehighlight that the cost and energy savings achievable via
survey of analytic work focusing on energy efficiency idlynamic right-sizing are significant. The case studiesligbh
general is [27]. Our work is differentiated from this littwee that if a data center has PMR larger than 3, a cost of toggling
by the generality of the model considered, which subsumesserver of less than a few hours of server costs, and less
most common energy and delay cost models used by analttian 40% background load then the cost savings from dynamic
researchers, and the fact that we provide worst-case geasarright-sizing can be conservatively estimated at largen ttz06.
for the cost of the algorithm, which is typically not possilibr Thus, even if a data center is currently performing valley
gueueing or control theoretic based algorithms. For examilling, it can still achieve significant cost savings via @ynic
using ‘model predictive control’ [28] has often been sudgés right-sizing.
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APPENDIXA
ANALYSIS OF THE OFFLINE OPTIMAL SOLUTION

In this section we will prove Lemma 1 and Theorem 1.
Before beginning the proofs, let us first rephrase the dattece

Computer Applicationgy timization (3) again. To do this, without loss of geneyali

we define the cost functiorf such thatf(\) = oo for A <
0 and A > 1. This allows the removal of the constraint in
optimization (3) thatr; > A, and the rephrasing as:

T T
minimize > " xf(\e/x1) + B i

t=1 t=1
subject to y; > x4 — x¢—1, andy; > 0.

(8)

Next, we want to work with the dual of optimization (8). Let
F3 () be the conjugate of the functioh, () = zf(\:/2).
Then the corresponding dual problem of (8)

T-1
max.— > F5, (g1 — ) = Fy (—pr) — o (9)
t=1

subject to0 < u; < 3,

where the complementary slackness conditions are

Nt(il?t — Tt—1 — yt) = 0 (10)
(B — )yt 0, (11)

and the feasibility condition ig,=(z; —x;—1) ", for 0< i, < 3.
Using the above, we now observe a relationship between the

data center optimization in (8) and the upper and lower beund

i.e., optimizations (5) and (4). Specifically,if- 1 = 0 in the

solution of optimization (9), thepy, ..., i, is the solution to

the following problem:

T—1
max.— Z FY, (o1 — pe) = FX_(=pr) — pwo - (12)
t=1
subject to0 < py < S.

Thus, the correspondingy, ...,z is the solution to opti-
mization (4). On the other hand, jf,+; = g in the solution



of optimization (9), thenu,...,u, is the solution to the APPENDIXB
following problem: ANALYSIS OF LAZY CAPACITY PROVISIONING, LCP(w)
1 In this section we will prove Lemma 2 and Theorem 2. We
maximize — Z Fy, (i1 — pe) — F5 (8 — pr) — mzo  begin by proving Lemma 2.
=1 Proof of Lemma 2: First, we prove that:l-w < z7.

subject to 0 < i, < 3. By definition, 2 = zZ, _, and so is the solution to
) , ) optimization (4) givenAq,...,A\r44,0,... and the added
Letting yu; = 3 — i, then gives (redundant) constraint that, .., = 0. Further, we can
-1 view the optimalz? as the solution of optimization (4) given
maximize — ZFL (y — pyy1) — Fx () + pizo — Bao Aty - -5 Argw, 0, with constrainte, 1 = 27,41 = 0.
=1 From these two representations, we can apply Lemma 3, to
subject to 0 < ) < 3. conclude that:Zw < x*.

_ _ _ Next, we prove thatrl < zL*. To see this we notice
It is now easy to check that the corresponding...,z; is that zL* is also the solution to optimization (4) given

the solution to optimization (5). M,..., A, 0,... and the added (redundant) constraint that
We require two technical lemmas before moving to the. ., = zZ, ., > 0. Then,zZ is the solution to opti-
proofs of Lemma 1 and Theorem 1. We omit the proofs. mization (4) given\,...,\,0,... with added (redundant)

constraintz; = 0. From these two representations, we can

Lemma 3. GivenA = (\;,...,\j), zi—1 = &1 andz; < ; L

" NS . -~ 7 = again apply Lemma 3, to conclude that < xzL-v,

Zj, Let X = (x;,...,z;-1) be the solution to optimization gFinaIIE)/pt)k/le proof thatr* < 2l < zU forTaII w>0is
. . ; L - ; . Pl < o >

(4) givenA with constraints fixing the initial and final vaIuesSymmetric and so we omit it. -

as z;_; and x; respectively. LetX = (%4,...,2-1) be the

solution to optimization (4) given with constraints fixing the

initial and final values ag;_; andz; respectively. Then, there

exists anX such thatX > X. Corollary 1. The optimal solution of the data center optimiza-
N tion (3) satisfies the following backwards recurrence rielat

From the above lemma, we immediately obtain an extension
of the characterization of the offline optimal.

Lemma 4. Given\q,..., A, and additional constraints, = S T
xs andx, = xg, optimization (4) and optimization (5) yield = 0, Uow T4 (13)
the same solution vector. T (:cjﬂ)i;w, T<T-1

We now complete the proofs of Lemma 1 and Theorem 1. Moving to the proof of Theorem 2, the first step is to use

Proof of Lemma 1:We begin with some definitions. Letthe above lemmas to characterize the relationship between
X} = (¢fy,aky,...,ak,) be the solution of optimization 2=CP) andar. Note thatet 7™ = gz = 2 LOP0) — 32 — 0,
(4) at time 7 and defineX? symmetrically. Additionally,

let X* be the solution to optimization (3) with arrival rate#emma 5. Consider timeslotd) = £ < t1 < ... <tm =

LCP(w)

(At~ A, 0) and constraint, ., = %, > 0. such thata, = xj,. Then, during each segment
. L. T . . (t;—1,t;), either

Now, consider the optimization problem (3) with arnva‘ N LCP(w) LOP(w)
rate (A1, ..., \r,0) and constraint:,,; = 0 and denote its () © > i and bothz, and zj are non-
solution by {z}}. Sincez, > X\, > 0, the complementary increasing for allt € (ti—1,ti2, or
slackness condition gives that.; = 0 in its dual problem. (i) =, CPw) z; and both z; ¢ ™) and xj are non-
Thus, i, . .., i, is the solution to optimization (12), and the  decreasing for allt € (t;_1, ;).
correspondingry, ..., 27 is the solution to optimization (4), Proof: The result follows from the characterization of

. A . :
"(z" Tt . X Next, we apply Lemma 3, which gives tha{he offline optimal solution in Corollary 1 and the definition
a7 < a7, as desired. of LCP(w). Given that both the offline optimal solution and

‘Symmetrically to the argument for the lower bound, togethetp(w) are non-constant only for timeslots when they are
with Lemma 4, we can see th&? is the solution to opti- equal to either:"* or 2, we know that any time; where

mization (3) with areraI rate$/\1,_...,)\T,0_) a_md_constral_nt Ifcp(w) — 2 and xfif(w) ~ 2, implies that both
zr41 = oo. Further X * is the solution of optimization (3) with " 7 p(, ’ i U Iw
arrival rateg A1, .. ., A+, 0) and constraing, ; = x%; < oo. Tt andzf, are equal to either, ™ orz; .

Again, applying Lemma 3 gives that for 3"Ii,t <2U. and Novagvlg wmust consider two cases. First, conS|dLeCrPt(P3Ue) case
t.

A that r 7™ > a7 ... It is easy to see that,

thus, in particular, we have that < z¥, as desired. ] ti , ' : i
i doesn’t match the lower bound sineg ,, is not less than
Proof of Theorem 1:As a result of Lemma 1, we know LCP(w) LCP(w)
> Ty

that 2% € [z£,2U] for all 7. Further, ifz* > a*,,, by the the lower bound. Note, we have thaf

0. Thus, in this case;* solves optimization (4) for the lowerNumber of servers it uses unless it matches the lower bound.
: : x

bound, i.e.a* = zL. Symmetrically, ifz* < x*,,, we have Consequently,itmustbe thaf, =z, >z, s
that complementary slackness condition (11) gives; = 8 Both xficp(w) and z;, match the lower bound. Further, the
and sox* solves optimization (5) for the upper bound, i.enext time when the optimal solution and LGH(match,t; 1,
x¥ = 2¥. Thus, whenever? is increasing/decreasing it musts the next time either the number of servers in LGP(

T

be matching the upper/lower bound, respectively. B matches the lower bourmf’“’ or the next time the number of

8



servers in the optimal solution matches the upper bmﬁfd. Next, recallingxfcp(w) is non-increasing in case (i) by
Thus, until that point, LCR() cannot increase the number of emma 5, we haver, | ,;, = xfflp(w) < gLCP) _

servers (since this happens only when it matches the lower , . It then follows from Lemma 3 thak,; < X/,
bound) and the optimal solution cannot increase the num s .

LCP(w) .
of servers (since this happens only when it matches the upper thuser 1,7 < 7 - Therefore, we have:
bound). This completes the proof of part (i) of the Lemma, (X)) <c((@rgr, - Ty, xR CP)))
and we omit the proof of part (ii) because it is symmetn. = (Trs11s s Tri1r))
Given Lemma 5, we bound the switching cost of L@R( LOPt o Clop
+ Xy (w)f()‘T+1/‘rT (w)) (16)

Lemma 6. costy(XLCP(®)) = cost,(X*). o ) _
) ) Combining equations (15) and (16), we obtain
Proof: Consider the sequence of timés= ¢ty < t; <

... < tm =T such thatz/“"") = x7, identified in Lemma c(zr) < c((@r41,15- - Trgr,r))

5. Then, each segmerft;_;,¢;) starts and ends with thewhencec(XT) +xfff(w)f(/\r+1/xfff(w)) < ¢(Xs41). By

same number of servers being used under both LERAOd - : . _ _
the optimal solution. Additionally, the number of servess pumming this equality for € [t;_1,t;), we have

monotone for both LCR{) and the optimal solution, thus the ti w »
switching cost incurred by LCR( and the optimal solution Z ItLCP( )f(/\t/xtLCP( )) < o(Xy,) — e(Xe,y)-
during each segment is the same. ] t=t; 141

Next, we bound the operating cost of LGH( Expanding out:(-) then gives (14), which completes case (i).

Lemma 7.cost,(X ECP))<costo(X*HB L |af — 2 ,|.  We now move tacase (i) i.e., segments where ") <
xk for all t € (¢t;,-1,t;). A parallel argument gives that (14)

Proof: Consider the sequence of timés= ¢ty < t; < holds in this case as well

LCP(w)

- <tm =T such thatr; = zy, identified in Lemma T complete the proof we combine the results from case (i)
5, and consider specifically one of these intervidls.1, %) and case (i), summing equation (14) over all segments (and
such thatz ™) = 2 LOP(w) _ g iti i LCP(w) _ &
tio1 i1 T, t the additional times whem, = 7). [ |
There are two cases in the proof: (u'fcp(w) > z* for all We can now prove the competitive ratio in Theorem 2.
. LCP(w B

T € (ti-1,t;) and (i) z, ) <z forallt € (ti-1,t). Lemma 8. cost(XLCPW)) < cost(X*) + 2cost(X*). Thus,

We handlecase (j)first. Define X, = (2:1,...,2+7) 8 | CP(w) is 3-competitive for the data center optimization (3).
the solution vector of optimization (5) givel, ..., A, with

the additional constraint that the number of servers at time Pr%%f:c Combining Lemma 7 and Lemma 6 gives that
match that chosen by LCRY}, i.e.,z,; = 2P addition-  cost(XTPCW) < cost(X*)+ S| —x;_,|. Note that, because

ally, define X!, = (2,4 ,...,2,,, .,,) as the solution both LCP{v) and the optimal solution start and end with zero
vector of optimization (5)Lg’gl, ..., A7, 0 with the additional servers on, we havg,, |zf —af | =251 (aF —= )T,
constraint thatr,; = 2~ Note that Lemma 4 givesWhich completes the proof. u

that X', , is also the solution vector to optimization (4) given All that remains for the proof of Theorem 2 is to prove that
LCP(w) the competitive ratio of 3 is tight. Space constraint préven

A1, ..., Ar, 0 and additional constraint,; = =7 . Fi- . . . . 4
nally, define the objective value for a vector= (y1, . . ., yum) including the full proof, however the instance which prasd

asc(y) ;:;1 e f /) + B (e — )+ the tight lower bound is defined as follows. The cost function

Our goal'is to prove that is defined agf(z) = 2™+ fo for (0 < z < 1,m > 2)andg =
0.5. The arrival rate at time is A\, = 6/~ with § > 1 for 1 <

l LCP(w) LOP(w) t<n,and)\; =0forn+1<t¢<T, wheren = [logs 5T11]-
2, = ) Further,fo = 20”1 andT The global optimal
bt a1 urther,fo = J5mm—y andT’ > B/ fo+n. The global optima
t; solution and the solution given byPC(w) can be calculated
< > @ fO/a) + Blae, — ). (14) analytically, and yield thatost(X P () /cost(X*) — 3 —
t=t;_1+1 2/m asé — 1. For largem, the competitive ratio is arbitrarily
) ] ] LCP(w) close to 3.
To accomplish this, we first argue thal ,, . = z7 Finally, the following lemma ensures that the optimization

LCP(w) _

via a proof by contradiction. Note thatif , . > 27 solved by LCP{) at each timeslot remain small.

; o .
Xr+1,ri1’0tr}g? tthg guﬁlrl'ni(;(;rt]iglrt\m(n4)(l9l')h:v32’md 'mvsgulghatl_emma 9. If there exists an index € [1,7 — 1] such that
Prg1 = P ' LT Vior < a¥,or a2l > ol then (2¥,,... . 2Y,) =

. . . . . ,’ET7t+1
beIong_to the r(]).ptlmal %0|_utl0:’] th(4) ,'h’T] Vﬂth %OnStrr]‘.”uﬂt (L, ... zL,), and no matter what the future arrival is,
prer = 0. This would imply thate, ., .= w7, WhiCh = d o ™ imization i1, 7] for 7 > 7 is equivalent to

dicts the fact that’ > P > 2L Second, if 9 piamee ; 2 --
contradicts 1,7 =TT Z Zr- » I solving two optimizations: one ovér, ¢] with initial condition
X, < 22P) then we can follow a symmetric argument;, and final conditionz¥/, and the second ovét—+1, '] with

to arrive at a contradiction. Thus, ,, . = z-""). initial condition z¥,.

Consequentlyz,, | , = @, for all ¢ € [0,7]. Thus

(X 41) = e(Xr) 4wk P f (A fakOF). (15)



