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Abstract—This paper proposes a model to study the interaction
of pricing and congestion in the cloud computing marketplace.
Specifically, we develop a three-tier market model that captures
a marketplace with users purchasing services from Software-
as-Service (SaaS) providers, which in turn purchase computing
resources from either Provider-as-a-Service (PaaS) providers or
Infrastructure-as-a-Service (IaaS) providers. Within each level,
we define and characterize competitive equilibria. Further, we use
these characterizations to understand the relative profitability of
SaaSs and PaaSs/IaaSs and to understand the impact of price
competition on the user experienced performance. Our results
highlight that both of these depend fundamentally on the degree
to which congestion results from shared or dedicated resources
in the cloud. We evaluate the inefficiency of user performance by
studying the ‘price of anarchy’ and show that it grows with the
non-linearity of the congestion functions for cloud resources.

I. INTRODUCTION

The cloud computing marketplace has evolved into a highly
complex economic system made up of a variety of services.
These services are typically classified into three categories:

(i) In Infrastructure-as-a-Service (laaS), cloud providers
rent out the use of (physical or virtual) servers, storage,
networks, etc. To deploy applications users must install
and maintain operating systems, software, etc. Examples
include Amazon EC2 and Rackspace Cloud.

In Provider-as-a-Service (PaaS), cloud providers deliver
a computing platform on which users can develop, deploy
and run their application. Examples include Google App
Engine and Microsoft Azure.

In Software-as-a-Service (SaaS), cloud providers deliver
a specific application (service) for users. There are a
huge variety of SaaS solutions these days, such as email
services, ERP, etc. Examples include services such as
Gmail and Google Docs.

Naturally, each type of cloud service (IaaS, PaaS, SaaS)
uses different pricing and contracting structures, which yields a
complicated economic marketplace in the cloud. For example,
Amazon computing services are billed on an hourly basis,
while some other Amazon services (e.g., queue or datastore)
are billed according to the data transfer in and out [5], [6].
Google pricing is applied on a per application or user per
month basis and more complex billing rules are applied if
monthly quotas are exceeded [15].

Further adding to the complexity of the cloud marketplace is
the fact that a particular SaaS is likely running on top of either
a PaaS or IaaS. Thus, there is a multi-tier economic interaction
between the PaaS or IaaS and the SaaS, and then between the
SaaS and the user. This multi-tier interaction was illustrated
prominently by the recent crash of IaaS provider Amazon
EC2, which in turn brought down dozens of prominent SaaS
providers [4], [20].

As a result of the complicated economic marketplace within
the cloud, the performance delivered by SaaS providers to
consumers depends on both the resource allocation design
of the service itself (as traditionally considered) and the
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strategic incentives resulting from the multi-tiered economic
interactions. Importantly, it is impossible to separate these
two components in this context. For example, users are both
price-sensitive and performance-sensitive when choosing a
SaaS; however the bulk of the performance component for
a SaaS comes from the back-end laas/PaaS. Further, the
TaaS/PaaS does not charge the consumer, it charges the SaaS.
Additionally, there is competition among SaaS providers for
consumers and among [aaS/PaaS providers for SaaS providers,
which yields a competitive marketplace that in turn determines
the resource allocation of infrastructure to users, and thus the
performance experienced by users.

Contributions of this paper

This paper aims to introduce and analyze a stylized model
capturing the multi-tiered interaction between users and cloud
providers in a manner that exposes the interplay of congestion,
pricing, and performance issues.

To accomplish this, we introduce a novel three-tier model
for the cloud computing marketplace. This model, illustrated
in Figure 1, considers the strategic interaction between users
and SaaS providers (the first and second tiers), in addition
to the strategic interaction between SaaS providers and either
TaaS or PaaS providers (the second and third tiers). Of course,
within each tier there is also competition among users, SaaS
providers, and laaS or PaaS providers, respectively. To the
best of our knowledge, this is the first paper that jointly
considers the interactions and the equilibria arising form the
players of the full cloud stack (i.e., users, services, and
infrastructures/platforms).

The details of the model are provided in Sections II and
IIT but, briefly, the key features are: (i) users strategically
determine which SaaS provider to use depending on a combi-
nation of performance and price; (ii) SaaS providers compete
by strategically determining their price and the IaaS/PaaS
provider they use in order to maximize profit, which depends
on the number of users they attract; (iii) IaaS/PaaS providers
compete by strategically determining their price to maximize
their profit; (iv) the performance experienced by the users is
affected by the congestion of the resources procured at the
TaaS/PaaS chosen by the SaaS, and that this congestion is a
result of the combination of congestion at dedicated resources,
where congestion depends only on traffic from the SaaS, and
shared resources, where congestion depends on the total traffic
to the IaaS/PaaS.

The complex nature of the cloud marketplace means that
the model introduced in this paper is necessarily complicated
too. To highlight this, note that an analytic study of the model
entails characterizing equilibria within each of the three tiers,
in a context where decisions within one tier impact profits (and
thus equilibria) at every other tier.

Due to the complexity of the model, in order to be able
to provide analytic results, we need to consider a limiting
regime. Motivated by the huge, and growing, number of SaaS



providers and the (comparatively) smaller number of laaS/PaaS
providers, the limiting regime we consider is one where the
number of users and the number of SaaS providers are both
large (see Section III for a formal statement). Under this
assumption, we can attain an analytic characterization of the
interacting markets which yield interesting qualitative insights.

More specifically, with our analysis we seek to provide
insights to the following fundamental questions:

(i) How profitable are SaaS providers as compared to
PaaS/TaaS providers? Does either have market power?
(i) How good is user performance? Is the economic structure
such that increased competition among cloud providers
yields efficient resource allocation?
(iii)) How does the degree to which cloud resources are
shared/dedicated impact (i) and (ii)?

Our analysis highlights a number of important qualitative
insights with respect to these questions, and we discuss these
in detail in Section IV. For example, our analysis shows that if
congestion is dominated by the congestion at shared resources,
the cloud market does not function well, i.e., providers can
be profitable but services are unprofitable and thus have no
reason to participate in the market. In contrast, if congestion
is dominated by congestion at dedicated resources, markets
function well, i.e., providers and services are both profitable
and services receive the bulk of the profits. However, in
both cases, our analysis highlights another issue with the
current market structure: the interaction of service and provider
markets serves to protect inefficient providers. That is, even if
one provider is extremely inefficient compared to other, the in-
efficient provider still obtains significant profit. Finally, another
danger that our analysis highlights is that the market structure
studied here can yield significant performance loss for users,
as compared with optimal resource allocation. Specifically,
the price competition among services and providers yields
inefficient resource allocation.

Relationship to prior work

There is a large literature that focuses on strategic behavior
and pricing in cloud systems and, more generally, in the
internet. This area of ‘network economics’ of ‘network games’
is full of increasingly rich models incorporating game theoretic
tools into more traditional network models. The following
surveys provide an overview of the modeling and equilibrium
concepts in typically used networking games, and additionally
include an overview of their applications in telecommunica-
tions and wireless networks [3], [17], [25].

In the context of cloud systems specifically, an increasing
variety of network games have been investigated and three
main areas of attention in this literature are resource allocation
[18], [24], load balancing [2], [7], [8], [12], and pricing [1], [9],
[14], [27]. It is this last line of work that is most related to the
current paper. Within this pricing literature, the most related
papers to our work are [1], [7], [9], [14], [23], [27]; see also the
references therein. Each of these papers focus on deriving the
existence and efficiency (as measured by the price of anarchy)
of pricing mechanisms in the cloud. For example, [9] considers
a two-tier model capturing the interaction between SaaSs and
a single IaaS, and studies the existence and efficiency of
equilibria allocations. Similarly, [1], [7], [14] consider two-
tier models capturing the interaction between users and SaaSs
or between SaaSs and PaaSs/IaaSs, and study the existence and
efficiency of equilibrium allocations. Thus, the questions asked
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Fig. 1. Model overview.

in these (and other) papers are similar to those in our work.
However, the model considered in this paper is significantly
more general than prior work studying the cloud marketplace.
Specifically, we capture the three-tier competing dynamics be-
tween users, SaaSs, and IaaSs/PaaSs simultaneously. Further,
we model the distinction between congestion from shared and
dedicated resources. Neither of these factors was studied in
the previous work; and both lead to novel qualitative insights
about the cloud marketplace (while simultaneously presenting
significant technical challenges to overcome).

II. MODEL OVERVIEW AND NOTATION

Our model represents a three-tier cloud marketplace and
focuses on the interaction between PaaS or IaaS providers
(termed “providers”), SaaS providers (termed “services”), and
final customers (termed “users”). We discuss each of the three
tiers in the following, starting with providers. The model is
detailed, and so Figure 1 provides a high level diagram.

This section focuses on the non-competitive aspects of the
model and the next one introduces, and begins to characterize,
the competitive equilibria considered at each level.

A. Providers

The “providers” in our model represent the PaaSs and IaaSs
in the cloud. That is, they sell computing infrastructure to
services (SaaSs) in a manner such as done by Amazon EC2
or Google App Engine.

We model competition among P > 2 providers, where each
provider p sells capacity to services at a price of 3, per unit
of capacity and time. For simplicity, we assume throughout
that services are all interested in one unit of capacity. This
pricing setup is a simplified model of the pricing scheme that
is currently employed by Amazon EC2 [5].

The total traffic served by provider p is denoted by y,,. Note
that y,, is dependent on both the fraction of services that choose
provider p, which we denote by g,,, and the number of users
that choose those services. Since g, is the fraction of services
choosing provider p, g, S is the number of services that use
provider p, where S > 2 denotes the number of services. We
use this particular formulation because we are interested in
letting the number of services grow large in our analysis.

The profit for provider p, per unit of time, is thus:

Provider-Profit(p) = 5,9,S.

Note that we do not model the operating costs of the providers,
but this could be incorporated easily into the above equation.



B. Services

The “services” in our model play the role of SaaSs. That is,
they sell a service to users, but buy the computing infrastruc-
ture used to provide this service from a provider.

We model competition among S > 2 (interchangeable)
services, where each service s is sold for a price a, to users.
The user traffic to service s is denoted by xs. Each service is
run on exactly one of the P providers, and the provider chosen
by service s is denoted by f;. For simplicity, we assume
each service is interested in one unit of service capacity that
provider p sells at price 3.

The profit for service s, per unit of time, is thus:

By, -

Note that we do not model the operating costs of the services,
but this could be incorporated easily into the above equation.

Service-Profit(s) = a s —

C. Users

The “users” in our model play the role of the customers
of services (SaaSs). Since these services have enormous user
bases, we consider a model with competition among infinitely-
many users, each of which controls an infinitesimal amount of
traffic, i.e., a non-atomic routing game. In total, the users make
up an (inelastic) arrival rate of A.

Upon arriving to the system, each user selects exactly one
service. When making this selection there are two factors that
come into play: the price charged by the service a; > 0 and the
congestion-dependent cost /4(x, f), where x = (21,...,2g)
is the amount of traffic going to each service and f is the
service-to-provider mapping. This cost can be interpreted as
the mean delay or mean reliability of service s. We use the
terms congestion cost and latency interchangeably.

It is important to highlight the dependence of the congestion
cost on both = and f in the setting of this paper. Specifically,
the congestion cost at service s could be affected by both
the number of users choosing s and also the number of
users choosing other services deployed on the same provider
of s, i.e., fs. This is because providers may have some
dedicated resources for services (such as virtual machines,
servers, or even a cluster of computers); but other resources
at the provider are necessarily shared (such as networking
components and possibly storage). In this paper, in order to
obtain analytic results, we limit ourselves to a particular form
of interaction between shared and dedicated resources:

o, f) = Cp, (xs) + 1. (yy.). )

So, ¢ captures the congestion at dedicated resources (con-
gestion depends on only the considered service traffic) and
{ captures the congestion at shared resources (congestion
depends on the total traffic to the considered provider). Of
course, one could analyse generalizations of the form given
in (1); however this form already captures the qualitative
interaction of these types of workloads. In fact, the relative
magnitude of congestion in shared and dedicated resources
shows up prominently in the results provided in Section IV.

Some additional technical assumptions (widely used in the
literature, e.g., [1], [13]) we require are that £, : RT — R*
and £, : R* — R, are continuously-differentiable, increasing
and convex; £,(0) = £,,(0) = 0 for all p; and £, (z;) < oo for
all z, and ¢,,(y,) < oo for all yy,.

Given the above, we model the users as minimizing their
effective-cost when choosing a service s:

User-Effective-Cost(s) = as + 5(x, f)

as + Uy, (x5) + Uy, (yy.)-

This form is motivated by considering the congestion cost as
being in currency units, and is a common modeling assumption
in the literature on congestion games; e.g., [1], [13].

III. MODELING AND ANALYZING COMPETITION

A crucial component of our model is capturing the strategic
behavior of users, services, and providers. In this section, we
define the equilibrium concepts we study within each level.
Clearly, these equilibrium concepts are quite entangled. So, we
start by defining the user equilibrium and build to the provider
equilibrium. Along the way, we derive results characterization
and existence results for each of the equilibrium concepts
introduced. Throughout, proofs are differed to the appendix
for the sake of conciseness.

A. Competition among users

Since each user carries an infinitesimally-small amount
of traffic, we model competition among users as a non-
atomic routing game; e.g., [21]. In this context, effective-cost
minimizing competition yields a Wardrop equilibrium, i.e., a
traffic allocation that follows from Wardrop principles [26]:
the effective cost of each user is identical and minimum at
each used service. Using the notation of our model, a user
equilibrium is defined as follows.

Definition 1. Consider a fixed service mapping f and service
prices a. A vector VE = 2VE(a, f) € [0,\]° is a user
equilibrium if

by, (2Y )+£fb( ) + ag
:S,:%&O{gf ( )+ Ly () )+Oés}7V8:xgE>O
ZS fs g *ypE,Vp,
Sl =
(2
This is a well established equilibria concept, e.g., [10],

and it is easy to obtain a strong characterization of the user
equilibrium using a potential function-based argument showing
that conditions (2) are the KKT conditions of a strictly-convex
optimization problem.

Proposition 1. Consider a fixed service mapping f and service
prices o. There exists a unique user equilibrium, which is given
by the optimizer of

min

220 U (e d““]+2/oypép(z>dz

st Zé fom =yp, Vp
Z Ts i
3)

Importantly, because optimization (3) is strictly convex, the
unique user equilibrium is efficiently computable [11].



B. Competition among services

We model competition among services as an oligopolistic
pricing game between S > 2 profit-maximizing services as in
[1], [7]. In particular, we assume that each service sets a price
and selects a provider in order to maximize its profit, yielding
a Nash equilibrium where no service has a unilateral incentive
to deviate.

Services have two choices (price and provider), and thus
the equilibrium needs to consider both. Because prices may
fluctuate at a faster time scale than the choice of a provider, we
focus on a two stage equilibrium and first define a “service-
equilibrium price vector” before then using this concept to
define a “service-equilibrium distribution”.

Service-equilibrium price vector: We define a service-
equilibrium price vector as follows.

Definition 2. Consider a fixed service mapping f. Then,
a®F = o%F(f) is a service-equilibrium price vector if

“

oSF ¢ argmax a,aVF ((@s, oY), f), Vs.
@, >0,

Establishing the existence of a service-equilibrium price
vector is harder than in the case of user equilibria. To highlight
this, note that in some special cases, a service-equilibrium
price vector is equivalent to the notion of oligopolistic equi-
librium in [1], for which existence is shown only when the
latency functions are linear.

So, when characterizing service-equilibrium price vectors,
we also limit ourselves to linear latency functions. Within
this context, the following proposition shows the existence
of a service-equilibrium price vectors even when (1) # 0,
provided that both ¢,(-) and /¢,(-) are linear. It is likely
that existence can be guaranteed outside of these restrictions
as well; however, as in [1], [7], there are cases where an
equilibrium does not exist.

Proposition 2. Consider (; () = as, x, and ép(yp) = dpYp
for all s and p. There exists a unique service-equilibrium price
vector.

We can also characterize the structure of service-equilibrium
price vectors in a more general context, provided they exist.

Proposition 3. Consider a fixed service mapping f. If o5F
is a service-equilibrium price vector, then af,E satisfies (5)
for all §', where p' = fo and x = zVE(aSE | f) is a user
equilibrium.

The price structure described by (5) is clearly cumbersome.
Given that the service-equilibrium distribution and the provider
equilibrium (defined later) both build on this characterization,
it is important to find a simpler representation if we hope to
be able to obtain analytic results.

The important observation we use to obtain such a simpli-
fication is that, in practice, the number of services tends to
be very large while the number of providers is (comparably)
small. Thus, a setting with S > P is reasonable. Further,
it happens that (5) simplifies dramatically when we consider
a large number of services. These observations lead us to
consider the following “large-system limit”.

Definition 3. The large-system limit is defined via a scaling
parameter n € N, with n — oo, where in the nth system:

(i) The user arrival rate is n\.

(ii) There are nS services and where services s, S + 5,25 +
Sy...,(n—1)S + s choose the same provider, for all
s=1...,5.

(iii) The dedicated and shared resource capacity of each
provider scales_proportionally with n, i.e., the latency
obeys Us(x) = Ly (x5) + L5, (%), for all s.

This limiting regime corresponds to a situation where our
system is ‘replicated’ n times. This is a classic approach in
economics [16] and in our case yields the interpretation that S
is the number of ‘normalized’ services, each of which behaves
like a non-atomic player. In this regime, the characterization
of the price vector equilibrium becomes manageable.

Proposition 4. Consider a fixed service mapping f. In the
large-system limit, there exists at most one service-equilibrium
price vector aF and

(6)

SE UEj ( .UE
al” =z Efs(xs ), Vs,

where 2V = gUE(oSE | f)

is a user equilibrium.

Not only is the price structure in (6) more manageable than
(5), it also highlights some important insights. Specifically, (6)
states that, in the large-system limit, services make profit only
because of the congestion on dedicated resources, congestion
at shared resources is irrelevant. In other words, the negative
externalities exerted to users due to the congestion on shared
resources is not profitable for services.

Service-equilibrium distribution: We have now defined and
characterized the equilibrium with respect to one of the choices
that services face, i.e., prices. What remains is to define and
characterize the equilibrium for how services distribute over
providers, i.e., the service-equilibrium distribution.

Clearly, the service-equilibrium distribution depends on both
the user equilibrium and the service-equilibrium price vector.
The following lemma highlights that all the services mapped
to the same provider have identical service-equilibrium prices
and incoming traffic.

Lemma 1. For any sy, sy such that fs, = fs,, oSE(f) =

OésS2E(f)~ Furthermore, :BSUE(aSE,f) = Z[fJE for all s where

def . . .
VEZ (GUE ,29E) is the unique solution of

min
p’:zg,E,gp/ >0

= Zp(ng) +@p(gpSng) +ab® Vp: 2P g, >0

{Zp/(ng) + gp/ (gp/SZgE) + Oég/E}

ZU‘D gpSzYF =X
sz > 0 if and only if g, > 0, Vp
(7)
and aﬁE = a;?E(f) is a service-equilibrium price of any

service that is mapped on provider p, for all p.

The above lemma implies that services are “indistinguish-
able” from the providers’ standpoint and allows us to define a
service-equilibrium distribution in terms of g, the proportion of
services using each provider, instead of f, the exact mapping
of services to providers. This is an important shift since we
are focused on the large-system limit. In the following, recall

that g, = g,(f) = |{s : fu = p}| 5.
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Definition 4. Consider fixed provider prices 3. Then g°F =
g°F(B) is a service-equilibrium distribution if it solves

s _ -
B UE — B, = Byt Vp:gi¥ >0
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®
where ng = ng(gSE) satisfies (7), and oz;?E =
ngE;(ng), i.e., it satisfies (4).

Note that this definition corresponds to a variation of
Wardrop equilibrium [21], [26], similar to the concept used for
the user equilibrium. This setting is reasonable since services
are indistinguishable and their number is large, so no particular
service has measurable market power. Specifically, in this
equilibrium the proportions of services on each provider are
such that the profits of all services are equal and maximal.
We stress that Definition 8 is dependent on the scaling in
Definition 5. The term S that appears in the definition of

E(g5F) should be interpreted as the “normalized” number
of services. So, S gf £ can be any non-negative number.

We now move to characterizing service-equilibria distribu-
tions. Proving the existence of a service-equilibrium distribu-
tion is complicated by the discontinuities (in g) that emerge in
the equations characterizing zV%(g), i.e., (7). The following
proposition gives a condition for which the service-equilibrium
distribution is unique, if it exists, and can be found via a
strictly-convex optimization problem.

Proposition 5. Consider fixed provider prices (. Let
(g¥(8),y*(B)) be the unique optimizer of the following
strictly-convex optimization problem

. ~ yp Yr n
gzrg’lynzo Z ypgp <Sgp> +/0 EP(Z)dZ + Sﬂpgp
P ©)
st Y gp =1,

DU = A

Ifng(B) > 0 and g;(B) > 0 for all p, then g°F(B) = g*(B)
is the unique service-equilibrium distribution.

Under the assumption that gEE (8) > 0 for all p, the
optimizers of (9) coincide with the conditions that define
a service-equilibrium distribution (Definition 4), which is a
remarkable and nontrivial property of our model. It will be
shown in Lemma 2 that the assumption g;f E(B) > 0 for all p
is true if 5 forms a provider equilibrium (defined next).

C. Competition among providers

To capture competition among providers, we consider price
competition among P > 2 providers that are profit maximiz-
ing. This yields the following Nash equilibrium formulation.

5
+ 5 = - ) S T (7 @)
p#p’ (Z;,D<yp)) +s;f2:p(elfs<zs>) s#s’ fa

Definition 5. The vector 37F

B, " € argmax B, 9," (B,, B7)S, vp.

p

is a provider equilibrium if

(10)

Importantly, this equilibrium embeds the equilibrium at the
service level, which in turn captures the equilibrium at the user
level. As such, it is the most informative, but also the most
difficult to study.

Characterizing the existence of provider equilibrium is a
very difficult task. This is highlighted by observing the struc-
ture of optimization (10), which is non-concave even when
latency functions are linear. As a result, we do not provide
analytic results regarding existence. However, it is possible
to obtain results characterizing provider equilibria, as done
in Proposition 3 for service-equilibrium prices in a special
case. In particular, the following proposition establishes the
structure of the provider equilibrium prices in the case of two
providers and linear latency functions. The structure provided
by this result (i) provides a constructive numerical method to
check existence of a provider equilibrium, as we discuss next,
and (ii) is crucial for characterizing the user performance and
service/provider profits, as we do in Section IV.

Lemma 2. If B is a provider equilibrium, then ggE(B) >0
for all p.

Proposition 6. Ler P = 2, {; () = ay.xs and {,(y,)
QpYp, for all s,p. Then
2
~ Zp
(Zp apg)
2a,

ZP dp + Sgp

p=1,2
(1D
where g = g°F(BFF) is a service-equilibrium distribution and
2z = 2YE(g) satisfies (7).

An important consequence of Proposition 6 is that it allows
numerical investigation of provider equilibria. In particular,
upon substituting (11) into conditions (8), one obtains a non-
linear system composed of four equations and four unknowns,
i.e., the y, and g,. Substituting the solutions of this system
back in (11), one obtains a guess for a provider equilibrium.
To check whether or not this guess (say J) is a provider
equilibrium, one can check numerically (10), i.e., whether
or not 3, is the best-response to 3_ . Using this approach
we have numerically studied 100 random instances which a
and a chosen uniformly at random from [0.1,10]. In all cases,
we found a unique solution to this system with the resulting
provider prices forming a best-response, which verifies that
provider equilibria typically exist when latencies are linear.

2
PE _ ~ Zp 49,1
51;/ =29y Zapg -5
p

IV. PROFITABILITY AND EFFICIENCY

To this point, we have introduced a model for the cloud
computing marketplace, and characterized the equilibria that



result from competition within this setting. Our goal in this
section is to use this characterization to understand the impact
of these interacting markets on all the parties involved, i.e.,
the users, services, and providers. In particular, our goal is to
study the three questions outlined in the Introduction.

Note that the analysis presented in the following crucially
uses Propositions 5 and 6, which characterize the service and
provider equilibria respectively.

A. Profitability of services and providers

In order to study the relative profitability of services and
providers, we need to make use of a detailed characterization
of provider equilibria, and so our focus is on the special case
of P = 2 and linear latency functions, as this restriction is
necessary to apply Proposition 6.

To apply Proposition 6, we first need to compute the user
equilibrium traffic allocation and the service equilibrium price
vector and distribution. These are characterized by condi-
tions (8) where the 3, are given by (6). One can show that the
resulting system of equations can be expressed in terms of the
solution a polynomial of order four. Thus, finding the solutions
of this system is possible both analytically and numerically.
However, the resulting expression for g% is cumbersome and
thus omitted. Instead, we focus on representative special cases
and numeric examples in order to highlight the insights one
can learn from the expression. In particular, in the following
we focus on the cases of symmetric and asymmetric latencies.

Symmetric latencies: To begin, we consider the special case
when latency functions are symmetric. In this setting, we
obtain simple, informative characterizations of the provider
equilibrium and service equilibrium price vector.

Corollary 1. Let P = 2, Zfs (xs) = azs and ép(yp)

for all s, p. Then, g5F(BFF) = (%, %) aSB(f) = d%, with f

such that g(f) = g5%(877), 2UF(g°F(87F)) = (5, 5), and
4aaS

2

ﬂPE — A et

P S/ Sa+4a

Importantly, the above result yields (after some algebra) the
profits of services and providers, respectively:

~ . 2
a4aA 3sz <>\> (13)

Sa+4a \ S

5 2aa

Sa+ 4a

To obtain insight from these formulas, let us focus on the
impact of congestion at shared versus dedicated resources. The
impact of these can be seen by varying the constants a and a.
If a > a (a < a) then congestion is dominated by congestion
at the shared (dedicated) resources.

A first observation is that the provider profit increases as
a increases (i.e., shared resources become more dominant),
and converges to 25 (%)2 a when a — oo. In contrast, the
service profit decreases as @ increases and becomes negative
for large enough a. Thus, providers are profitable when shared
resources dominate, but it is unprofitable for services to
participate in the cloud marketplace in this setting.

In contrast, if we let a grow, i.e., dedicated resources
dominate, then both provider and service profits increase.
Further, as a — oo service profits also grow unboundedly

and provider profits converge to ’\2‘1. Thus, both services and

(12

Service-Profit(s) =

Provider-Profit(p) = (14)

providers are profitable if dedicated resources dominate, but
services extract a dominant share of the profits. The fact that
services receive a dominant share of the profits is interesting
given that competition is much larger in the service market
(recall that S is the normalized’ number of services).

Asymmetric latencies: The case of asymmetric latencies
is not as simple as the symmetric case studied previously.
Thus, we restrict ourselves to a particular form of asymmetry
that is particularly illustrative: a; > ao, a1, as. In this case,
congestion is dominated by the shared resources at provider
1, and congestion at provider 2 is in balance between shared
and dedicated resources (in comparison to provider 1). Thus,
there is a “dominant” provider in this case which has more
efficient infrastructure. The question we look at in the analysis
is the extent to which this dominant provider can exploit this
increased efficiency in the marketplace.

The first step of the analysis is to characterize the provider
equilibrium prices (in the same setting as Proposition 6). Using
that a; is large, we get

Y2
BEE ~ 2g,, Z ST”B@,, P =1,2. (15)
p Ip

To obtain a clean characterization of the profits, we consider
the case when the asymmetry becomes extreme, i.e., G; — 00
and ao = a3 = ag = 1. This allows the following characteri-
zation of the profits for the services and providers.

Corollary 2. Let P = 2, 5. (x,) = axs and ly(y,) = ay,,
for all s, p. Further, consider a1 — o0 and s = a1 = as = 1.
Then,

Provider-Profit(1) — 35 (%) 2
Provider-Profit(2) — 38 (%)2 (16)
Service-Profit(s) — —% (%)2

A first comment on Corollary 2 is that it is in complete
alignment with (13) and (14) for the case of symmetric
providers. Specifically, in the case of symmetric providers,
services are unprofitable and providers are profitable when
shared resources dominate congestion. That is exactly what
we see in this asymmetric setting as well.

However, Corollary 2 also highlights something interesting
about the competition among providers. In particular, the
market structure protects the inefficient provider by limiting the
market power of the dominant provider. In particular, despite
the fact that the gap in efficiency is extreme, provider 2 can
only extract at most four times the profit of provider 1, and
provider 1 still extracts significant profit. The reason for this
is that, even though the latency function at provider 1 is very
steep, provider 1 still manages to obtain at least 1/3 of the
services (see the proof). Importantly, because of the steepness,
these are services with very little user traffic; however provider
I can still obtain significant profit from them.

Importantly, the insights provided by Corollary 2 hold more
generally as well, as illustrated by Figure 2, which illustrates
provider and service profits when a; < oo.

Though we have only considered one form of asymmetry
above, this setting is quite representative. In particular, the
other settings we have considered all reinforce the impact of
shared vs. dedicated resources on profitability highlighted by
Corollary 1 and the limited market power attainable in the
provider market highlighted by Corollary 2. Thus, we omit
them due to space constraints.
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Fig. 2. Service and provider profits when providers are asymmetric.

B. Efficiency of user performance

The previous analysis focuses on the impact of the market-
place on services and providers, we now shift to the impact of
the market structure on the user performance. In particular, our
goal is to understand how price competition among services
and providers impacts the performance experienced by users.

To perform this study, we contrast the performance at
equilibrium to the performance achievable if the allocation
of traffic to services and providers was performed optimally.
In particular, we study the following ratio, which is often
termed the “price of anarchy” [19]. To state the definition we
need to first define the ‘network latency’, our measure for the
aggregate user-experienced performance:

det 1 > -
(2, 9) = 3 Z Sgpzp ((ep(zp) + gp(Sngp)) 17
P

This form follows from using Lemma 1 and recalling that
Sgpzp is the total traffic to provider p, which is normalized
by the scaling parameter n in the large system limit. (Note
that > Sgpzp = A.)

Definition 6. We define the price of anarchy (PoA) as

Y/ UE _SE

(27’9*) >1 (18)
0(z*,9%)

where g°F = gF(BPE) and VP = ;UF

when B = BPE, and

PoA % sup

ﬁPE

(gSE) satisfy (8)

(2*,¢%) € argmin  {(z,g)
220,920

ste Y, 9pSzp = A
Zs p = L

19)

While many results on the price of anarchy of non-atomic
routing games are known, the multi-tier structure of our
model add significant complexity in deriving such results.
To highlight the challenge, note that the mappings ¢* and
g°F(B5F) differ in general, which makes analysis difficult.
However, the following straightforward lemma highlights that
it is possible to bound the price of anarchy by focusing on
cases with “fixed service-to-provider mappings”.

Lemma 3. PoA > POAQSE(ﬁPE), where

w (V5 0)0) |

PoA
Uz (99 T
and
z*(g) € argmin  £(z, g)
220

(20)
st Y, 9pSzp = A

Using this lemma, we can obtain lower bounds on the price
of anarchy by studying the price of anarchy in the (simpler)
case of fixed service-to-provider mappings. In this case, we
can prove the following bounds.

Theorem 1. Let € > 0. Consider P = 2, {y(y,) = apy¥, and
lp(yp) = apyp. Then,

Q(kl_e) < sup POAgSE(ﬁPE) <k+1,

where the sup is taken over S,\,a,a, 7. Thus, PoA >
Qk=e).

Theorem 1 highlights that the price of anarchy grows
quickly as the non-linearity of the latency functions grow.
This behavior is not unexpected, as a similar result holds
for classical non-atomic routing games [22]. However, the
consequence in this setting is important: it highlights that the
cloud marketplace can yield equilibria that have inefficient
user performance.

Note that Theorem 1 provides a negative result; however we
conjecture that positive results are also possible. In particular,
we conjecture that the price of anarchy remains small in the
case of linear latency functions, similarly to what is observed
in classical non-atomic routing games. In fact, when P =
2, our numerical studies support the claim that PoA < 7/6.
However, proving such a result is difficult.

V. CONCLUDING REMARKS

In this paper we develop a three-tier market model for
a cloud marketplace. Our focus is on a setting including
users purchasing services from SaaS providers, which in turn
purchase computing resources from either PaaS or [aaS. Within
each level we define and characterize competitive equilibria.
Further, we use these characterizations to understand the
profitability of SaaSs and PaaSs/IaaSs, and to understand the
impact of price competition on user experienced performance.

The results in this paper represent a starting point for the
analysis of the novel model presented here, and we hope that
the model is of interest in its own right for future research.
In particular, it captures a rich interaction between pricing
and congestion across multiple markets; and there are many
open questions that remain. For example, our results require
(for technical reasons) a variety of simplifying assumptions.
It would be quite interesting to relax these, e.g., study P > 2
and characterize equilibrium existence and uniqueness for non-
linear latency functions. Additionally, our price of anarchy
analysis focused on lower bounds, but upper bounds are
also important (but seemingly difficult) to obtain. Finally, a
particularly important future direction is to study the con-
trasts between different pricing schemes used by services and
providers using the model in this paper.
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APPENDIX
A. Proof of Proposition 1

With respect to multipliers Ly p, L2 and L3 s > 0, the KKT
conditions of (3) read

t?fs (vs) +as— L1y —La— L3 =0, Vs
Cp(yp) + L1y =0, Vp

plus feasibility constraints and complementarity slackness.
Substituting the second equation into the former, we obtain
conditions (2). Since (3) is a strictly convex optimization
problem, there exists a unique minimizer; and thus a unique
user equilibrium.

B. Proof of Lemma 1
SE

For contradiction, assume that o < anE. Then,
2VE(a%F, f) > 2UF (a5, f) by the definition of user equi-
librium. Given the structure of a2F(f) (5), which is proven
in Proposition 5, we have that ozle (f) is strictly increasing
in x5,. This follows because the fraction that multiplies xs,
in (5) does not change when x5, varies and x5, + x5, is kept
constant. Consequently, aflE > anE , which is a contradiction.
Further, the same argument gives that a5? > o5F does not

SE _ ,SE
hold, and so o = a5,”.

2y

But, if aflE = afZE, then (5) ensures that x5, = z,. Since
s; and sy are general, this holds true in general, and zs =
é%iji' Substituting z, = S?/g#f = 2, in Definition 1, we get
conditions (7). Existence and uniqueness of a vector zUF that
solves (7) follows easily by using the potential function method

(similarly to the proof of Proposition 1).

C. Proof of Proposition 2

Consider Formula (5). If the latencies are linear, the right-
hand term can be rewritten as (@, + ¢y ), where p’ = fg
and ¢, is some constant. Let a* be such that o} is given by
Formula (5) where the x satisfies the following conditions

min {27, (00) +Ls, (yp,) + 2o lag, +eo)}

s’:wfl >0 R

= Uy (ws) + Ly, (yp.) + @s(@y, +05), Vs 12 >0 (22)
sifs=pLs = Yps Vp,

sts =
Since /,(0) = ép(O) = 0 for all p, previous conditions read

gfl (wl) +gf1 (yfl) + xl(dfl + cl)

= U5, (w5) + Ug, (yy.) + zs(ay, +cs), ¥s > 1
sife=pLs = Yps Vp,

st:

(23)

and form a linear system with S + P unknowns and S +
P independent equations, thus there exists a unique solution
(say z*) and it is such that 27 > 0 for all s. We claim that
a*, which is now well-defined because o} = z}(ay, + c;) for
all s, is a service-equilibrium price vector. To prove this, we
use Definition 2 and show that no service has the incentive in
changing its price. This amounts to check that for all s:

af € argmax ayzUf((@y,a* ), f)
@, >0
= argmax Qg Ty
@y >0,L3 s
st Lae) +Uyy,) + oy = Lay =

(s) + Uys.) + o — Las, Vs # s
sifs=p Ts = Yp, Vp,

M(\x?\p

sTs =
Lg,s Z O,VS
L3 sxs =0,Vs

(24)
which follows by using that V¥ ((ay,a* ), f) is the opti-
mizer of the strictly convex optimization problem (3) and sub-
stituting its KKT conditions in the constraints of the optimiza-
tion in (24). One can check that the point (o, L3 s = 0, Vs)
satisfies the KKT conditions of the optimization problem (24),
for all s’. Note that if Ls, = 0, Vs, then (24) becomes a
strictly concave optimization problem, which means that there
exists a unique optimizer. Since (24) is non-concave (or non-
convex), this allows us to say that (a,, Ls s = 0, Vs) is a local
maximum. However, we now prove that (o}, Ls s = 0, Vs)
is actually a global maximum. By contradiction, assume that
Lss > 0 for some s. Then, z, = 0 by complementarity
slackness, but this implies that the profit of provider s is zero,
in contrast with previous case which was positive. This proves
existence. Now, the facts that L3 3 = 0, Vs in any stationary
point of the Lagrangian of (24) and that (24) is strictly concave
problem when L3 ; = 0, Vs prove uniqueness.



D. Proof of Proposition 3
We begin with a technical lemma.

Lemma 4. Let f be given and o = o (f) be a service-
equilibrium price vector. Then, a Y (a, f) > 0, Vs.

Proof: To begin, assume that o = 0. It follows that there
exists € > 0 such that each service s has the incentive in
setting price a5 = €. To see this, note that, by the assumption
0;.(0) = Ef (0 ) = 0, Vs it follows that zVZ(0, f) > 0,Vs.
Take oy, = € = mins/;,és Ly (xYE(0, f)) > 0. In this case,
ming 25 £y (2VE(0, ) < ming s s (xVF (ees, f)), where
e, is the unit vector in direction s, because of the monotonicity
of the latencies. In other words, € < ming s £y (zVF (ees, f)),
which implies Y (eey, f) > 0 and then ezVZ(ee,, f) > 0.

Now, to ﬁmsh the proof, we show that if there exists s’

such that ay2UF (o, f) > 0, then aszV%(a, f) > 0, Vs. To

prove this part, we proceed as in Lemma 4.2 of [1]. Let K def

ay +Ls(2YE (o, f)), which is positive by assumption. Assume
(o, f) = 0 for some s and consider the price a5 =
K — ¢ for some small € > 0. Using that ¢;,(0) = ¢y, (0) =0,
necessarily zY%(a(f), f) > 0, which violates the hypothesis
that the profit of s is zero. ]
Using the above lemma, we can now prove Proposition 3.
Let f be given and o = o*F(f). Using that a,2VE(a, f) > 0
for all s (by Lemma 4), service-equilibrium prices of service
s’ are the optimizers of the following maximization

max QgL
ag,x>0 _ ) _ R
st Ly (xe) + Ly (yp) + aw =y, () + L5, (y7,) + o,
Vs # s’

ZS fompTs = Yp, VD
Zs 1 .'L'S - )\
(25)
where p’ = f,.. Imposing to zero the partial derivatives of the

Lagrangian of previous optimization problem, with respect to
multipliers Ly s, La p, Lz € R we obtain

Ts = Es;ﬁs L 1,s

Qs = Zs#s L1 Se ( S/) - L?,p’ - LS
—Ly sty (vs) — Ip,fs —L3=0 Vs # &
Zs#s’:fsip’ les%i(yp') + Loy =0

728753/:]“5:[) Llp‘?é;?(yp) +L27P = 0 vp #p/'

(26)
Substituting L1 ¢ from the third equation, and expliciting Lo ,
(respectively Lo ;) from the fourth (fifth) equation, after some
algebra we get (5).

E. Proof of Proposition 4
By Lemma 1, we have

Ts = TS+s = T2S+s " = L(n—1)S+s> Vs. (27)

SE _ . SE _
and T = aS+a a2S+:> =

(27) in (5), we get

SE — SE I
Al 1)+ Vs. Substituting

c
Qg :a:slf’(xs/)—ka:s/c—l, Vs' e {l,...,S} (28)
2
where
S
no ¥ /( L (@)
o & e +1 29)

(@)

S - !
n S:zlz/ (T, @) |n = (@) =T (@)
e déf fs#p fs :p’
— S _
(2, ,0) 1—nsﬂ§s¢p,(ifﬁ (@s))
2 S 7 -1
" < 2 (CACH)) > - -1
+ Y el ~ (7, (@0)
g CIR) R R )
S (7’ -1 b
o szz:l ( fs (x5)>

(30)
and, with a slight abuse of notation, we have used y, =
L s = o % As T — 00, ¢ — 0 and
|ca| — oo, and we conclude that (6) holds.

Now, putting (6) in (2), we get the conditions

s'gljgo {éfs, (o) + Ly, (y5.,) + xszﬁ’fsl (ms,)} —
Zfs (zs) + éfs (yr,) + xsg}s (zs),Vs€{l,...,S} 125 >0
s:fs=p Ts = Yp, Vp
Zf:l Ts= A
xs >0, Vs,
(3D

which coincide with the KKT conditions of optimization
problem

s Py,
ming>g szﬁfs(ms)—i—z:/ lp(z)dz
s=1
s
ZSS 1:fs —p
Yoo s = )\.
Problem (32) is strictly convex because the Zp(~)s and the

@p(-)s are increasing and convex by assumption, and therefore
there exists a unique optimizer [11].

F. Proof of Proposition 5
Consider the optimization problem

- zpSygp .
Z ZPSgpép (Z;D) + /0 gp(zp)dzp =+ Sﬂpgp
p

Zp gp = 17
Zp 9pSzp = A.
(33)
Imposing the partial derivatives of the Lagrangian of (33) to
zero and with respect to multipliers Ly, Lo, L3 , > 0,L4, >0
for all p, after some algebra we get
SBy = S220, (2p) — L p = L,
0y (2) —|—€ (szgp) —|—zp£ (zp) —

(32)
= Yp, Vp

min
9>0,2>0

s.t.:

vp

Vp.
(34)

Now, using that the L3 ,s and the L, ,s are non-negative and

that the complementarity slackness conditions ensure L3 g, =

0 and L4 ,y, = 0, conditions (34) can be written as

{Sﬁp’ - SZ;Q)’Z;)' (Zp’)}

L4,p = LQa

min
p':g, >0 )
=SBy — Szpt;, (2p) ,¥p 2 gp > 0
(35)
p’gfgo{  (2) + Ly (2 Sgpr) + 2prly (Zp’)}
= ep (Z ) e (ZpSgp) + pr (Zp) s VP : Zp > 0



Furthermore, in an optimal solution of (33), we have z, > 0
for all p. In fact, assuming that z, = 0 for some p, We have
Ly, = —Ls < 0, by (34), because there always exists p’ such
that z,» > 0 for which (34) and L4 2, = 0 ensures that Ly =
Uy (2p0) 4+ Ly (20 Sy )+zp/E (zp), which is strictly positive
because the latencies are increasing. Therefore, substituting in
(35) that z, > 0 for all p and since in an optimal solution
gp > 0 for all p (by hypothesis), we get conditions

By — 220, (2) = B — 2201 (1), Vp
é (2p) + 0 p(2pSgp) + Zpg (2p) = (36)
61 (2’1) + 81(21591) + Zle ( ) y Vp.

Conditions (36), together with the constraints of (33), coin-
cide with the condltlons (8) that define a service-equilibrium
distribution if ¢ > 0,Vp. Therefore, service-equilibrium
distributions ¢° EE g°F(BFF), provided that they exist, are
exactly the optlmlzers of (33). With the change of variable
zp = SyTZD’ (33) is equivalent to (9). Using that the £,()’s
and the /,()’s are convex, one can check that the objective
funtion of (9) is strictly convex (the Hessian is strictly positive
semi-definite). Since (9) is defined on a non-empty and convex
domain and that the g,’s are positive in an optimal solution,
(9) is a strictly-convex optimization problem; see [11].

G. Proof of Lemma 2

Let 8 be a provider equilibrium. Then, 8 # 0. In fact, if
B = 0 then ggE(O) = 1 where p = argmax,, G, (this is
evident from (8)). But p does not make any profit because
Bp = 0 and thus has the incentive to deviate. If 3, > 0 for
(at least) provider p’, then again the structure of (8) ensures
that all the other providers make strictly positive profit (all of
them have the incentive in increasing of e their price), i.e.,
Bprg5¥ (B) > 0 for all p, which implies g5 (3) > 0.

H. Proof of Proposition 6

Let price vector 5 = (f1,2) be a provider equilibrium.
Using that in a provider equilibrium g,(8) > 0 for all p
(by Lemma 2), the values of 3, that maximize the profit of
provider p are the optimizers of the following maximization
problem (say PROB,)

ma BpapS
920,y>0 )
S.t.: &1 (Sygll) — 61 = (12 (592) — 62, (37)
g1+ 92 =1,
2&181/7_;1 + dlyl = 2[1257/7;2 + ELQyQ,
y1+y2=A

Without loss of generality we study PROB;. The Lagrangian
of PROB;, with respect to multipliers L; € R, i = 1,...,5,
reads

def

L= —pig1S+

2 2
Ly (511 (S‘%) = f1— a2 (;7;2) + 52> +
Ly(g1+g2— 1)+
Ls (fl(yl) + 2&153’—;1 — o (1) — 2&2;!—;2) n
Ly(yi +y2— )
_L5517

(38)
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where Ls > 0. Imposing the partial derivatives (with respect
to 1,91, 92, Y1, y2) of L to zero, we obtain that the following
conditions are necessarily satisfied in a stationary point of L:

g8 =—L1— Ly

B1S = — L1 Frin + Ly — Ly 2220y
LlSQ 3a2+L2+L3522a2—0
L152 2a1 + Ly(ay + 22 Se-)+Ls=0
Ls(ag + 2“2)+L4:0.

(39)

~L1 2 Sogz2 —

Now, assume that the optimizing (; is greater than zero.
Then, Ls = 0 by complementarity slackness conditions. Using
g1S = —L; and substituting Lo (respectively L4) from the
second (fifth) equation in the first (fourth), we obtain

2y% _ .
s =08 3k 1o 2 2,
p
Z 24 2(ap+cp)

gl E + 2aptcp
Sgp

(40)
= L3

After some algebra, this yields (11). Note that this is not
enough to claim that the optimizing 3 satisfies (11) because
we assumed 7 positive. To complete the proof we need to
argue that 3 is positive.

Lemma 5. The right-hand term of (11) is non-negative.

Proof: To prove the statement, we show that

2 2
(3158 + iy (Sgl it g+ o) @1
25 (145 + a2 S2g§) > 0.

Considering a; = ao = 0, after some algebra the left-hand
side of previous inequality becomes (y1/g91 — y2/ g2)2. ]

1. Proof of Corollary 1

Using the linearity of the latency functions and substituting
(11) in the definition of service-equilibrium distribution, in a
provider equilibrium we have the following conditions

~(311)2 ~(yz )2
al—) —al=—) =
Sq Sg2

21— g2) |Yae 2T @)
1— g2 - = F—
" 5295 Szpa—l-Tap
~ U ~ ~ Y2 ~
2a—=—— + ay1 = 2a—— + ay2, (43)
Sg1 Y Sg2 Y
g1+g2=1,
y1+y2=A

with g, y, > 0, Vp. By substitution, one can check that g, =
1/2,y, = A/2, Vp, solves the above equations. To prove the
statement, we need to show that that is the unique solution.
For contradiction, assume that y; > yo. Then, by (43), g1 <
g2 and the left-hand side of equation (42) is positive. Since

~S2 s — 202, ggp) /3, (a+ 52“ ) is non-negative (by
Lemma §) the right- -hand side of equation (43) becomes non-
positive, i.e., a contradiction. Therefore, g, = 1/2,y, = A/2,
Vp, is the unique solution and substituting in (11) we get (12).




J. Proof of Corollary 2
Substituting (15) in (8), after some algebra we get

2 2
a121 (1 — 92> ~2;;2 (1 — 91>
g1 g2

20121 + 4159121 = 2229 + 4259222 (44a)
g1t+g2=1
Sg121 + SQQZQ = )\, (44b)

which means that in a solution (yUE g°F) of (44) we have

se < 2y

=3 b
Therefore, even though the latency at provider one is very
large, competition does not prevent it in hosting at least 1/3 of
the services, though the resulting traffic Sg; 2V’ ¥ will be small
because (44a) can be rewritten as (using (44b))

5S4 45)

2a; | -
S+ 0o
Sg127F = P S92 P A, (46)
214y + 22 +a

which approaches zero when a; — oc.

Assume that a1 = a — oo and as = a; = as = 1.
The solutions of the non-linear system that is obtained by
substituting (11) and (6) in (8) can be expressed in terms of
a polynomial of order four. In particular, using Ma gle one
obtains that in a solution of such non-linear system, g7~ = z*
where z* is a root, in [0, 1], of the fourth-order polynomial

(3035 + O(@)z! — (@55 + Ofa))="
—(6a5 +0(1 ))z + (365 + 955 +24+0(a™Y))z
8 -85 — 25 4L O(a~ )70,
Dividing by a?, one gets that the solutions of this polynomial

converge to the solutions of (3z — 1)z = 0 as a — oo.
Here, all four solutions are apparently feasible, but the one

of interest is 2* = 1/3 because of (45). Using g7¥ = 1/3
2
and that zVF — 0 (see (46)) we get ﬁfE = g;?Eii% and

substituting in the definitions of service and provider profits,
we get the expressions in the statement.

K. Proof of Theorem 1

Let g = g°F be a service equilibrium distribution (defined
with respect to generic provider prices). The following inequal-
ities proves PoA, < k+1 with respect to any model instance:

©(z"%(9), 9)
Z Sgpzp (ap Zp ) +@p(59pzp )k)

p:gp>0
E E SgPZgE )
<(k+1) Z Sgng &p(zg )k +/ dpzkdz
p:gp>0 0
* *\ k Sng; k
<(k+1) > Sgpzpip(zy) +/ apztdz (47a)
p:gp>0 0
< (k+1) Z Sgp&p(zp) T4+ apSgp(Zp)k+1
p:gp>0
= (k+1)0(z"9).
In (47a), we use that 2YF(g) minimizes

> pgy>0 Sapzply (2p) —&—fsg”z’“ {,(2)dz. This follows because
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the conditions (7) that define 2Y¥(g) when a;?E = sz;(zp)
(recall that g is a service-equilibrium distribution), i.e., the
service-equilibrium prices in the large-system limit, are the
KKT conditions of the strictly-convex optimization problem

Sgpzp
Izn>151 Zpgp>059pzp£ z) + Jo vy p(2)dz

s.t.: Zp:q >0 Sngp = A

Moving to the lower bound, we prove that Q(k'~¢) <
sup PoA,. To do this, we consider the exhibit a
S, Xdp,ip,p=1,2
bad example. Our example is the following: G, = G2 = 6 > 0,
ar =2y = 1.
Using the KKT conditions of (48), which are the defining
conditions of zVF(g), and (20), we get

(48)

_ 1/k
SglleE =\ ma 1/2k' Y 1k
(S +an) o+ (S5 )
(1+k)/*
2925
s (1+k)1/k
—0 14+ 295
22 _ + &2) 1
Sk k ol
Sg1yi = A v -

_ N\ LU/k ~ Uk 550 " 14 Lo
(o) (o)

Finally, substituting into the definition of PoA, we obtain

Gtml/k o\ B ke
2592 + 1 1
1Jr(pr;c)l/k 2k sk gk 1Jr(prk)l/k
2595 2592

PoA,(k
9( ) 50 1 k+1 1 K+l
2592 + 1
1 SFskgk 1

1+ 555 2\ + 355,
_ 2Sgo+(14k)H/E 25,41\t
o 25g2+1 2Sga+(1+k)1/F

k1

>  28gatk 25g2+1
= 25g2+1 \ 2Sgat(1+k)1/F ’

2S
. pToi
~ 2Sga+1 7

(49)
where the last inequality uses that (14 k)'*/¥ > k. Now, by
symmetry, one may have chosen the case s = a; = 6 > 0,
as = 2¥a; = 1 and obtained again (49) written with respect
to ¢p instead of go. Therefore,

gp -1
kzéjﬁ
lim sup PoA,(k)x | max —— > 1. (50)
k=00 G, a,.p=1,2 s(k) p 2S¢, +1

Now, let € > 0. Since there exists S such that max, % >
. . P
1 — ¢, the proof is finished.



