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Abstract—We consider a set of users served by a single load-
serving entity (LSE) in the electricity grid. The LSE procures
capacity a day ahead. When random renewable energy is
realized at delivery time, it actively manages user load through
real-time demand response and purchases balancing power on
the spot market to meet the aggregate demand. Hence, to
maximize the social welfare, decisions must be coordinated over
two timescales (a day ahead and in real time), in the presence
of supply uncertainty, and computed jointly by the LSE and the
users since the necessary information is distributed among them.
We formulate the problem as a dynamic program. We propose
a distributed heuristic algorithm and prove its optimality when
the welfare function is quadratic and the LSE’s decisions are
strictly positive. Otherwise, we bound the gap between the
welfare achieved by the heuristic algorithm and the maximum
in certain cases. Simulation results suggest that the performance
gap is small. As we scale up the size of a renewable generation
plant, both its mean production and its variance will likely
increase. We characterize the impact of the mean and variance
of renewable energy on the maximum welfare. This paper is a
continuation of [2], focusing on time-correlated demand.

I. INTRODUCTION

This paper is the second part of a two-paper series where

the first part is [2]. The goal of this paper is to design

and evaluate distributed algorithms for optimal energy pro-

curement and demand response in the presence of uncertain

renewable supply and time-correlated demand. The overall

motivation and the discussion of related literature have been

presented in the Introduction section of [2]. In the following,

we introduce the problem under study and the contribution

of the current paper and earlier papers.

Specifically we consider a set of users that are served by

a single load-serving entity (LSE). The LSE may represent

a regulated monopoly like most utility companies in the

United States today, or a non-profit cooperative that serves a

community of end users. Its purpose is (possibly regulated)

to promote the overall system welfare. The LSE purchases

electricity on the wholesale electricity markets (e.g., day-

ahead, real-time balancing, and ancillary services) and sells

it on the retail market to end users. Each user, on the other

hand, has a set of appliances (electric vehicle, air conditioner,

lighting, battery, etc.) which can adapt their demand. The

user’s energy management system is to decide how much
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power to consume in each period of a day (i.e., demand

response). The LSE is to make energy procurement decisions,

including how much capacity it should procure a day ahead

and, when the random renewable energy is realized at real

time, how much balancing power to purchase on the spot

market to meet the aggregate demand. The overall goal is to

maximize the social welfare.

Our model captures three important features:

• Uncertainty. Part of the electricity supply is from

renewable sources such as wind and solar, and thus

uncertain.

• Supply and demand. LSE’s supply decisions and the

users’ consumption decisions must be jointly optimized.

• Two timescale. The LSE must procure capacity on the

day-ahead wholesale market while user consumptions

should be adapted in real time to mitigate supply uncer-

tainty.

Hence the key is the coordination of day-ahead procurement

and real-time demand response over two timescales in the

presence of supply uncertainty. Moreover, the optimal de-

cisions must be computed jointly and distributively by the

LSE and the users as the necessary information is distributed

among them.

In [1], we considered the case without renewable genera-

tion. In the absence of uncertainty it becomes unnecessary to

adapt user consumptions in real-time and hence supply and

consumptions can be optimally scheduled at once instead

of over two days. We show that optimal prices exist that

coordinate individual users’ decisions in a distributed manner,

i.e., when users selfishly maximize their own surplus under

the optimal prices, their consumption decisions turn out to

also maximize the social welfare. We develop a distributed

algorithm that jointly schedules the LSE’s procurement de-

cisions and the users’ consumption decisions for each period

in the following day. The algorithm is decentralized where

the LSE only knows the aggregate demand but not users’

utility functions or consumption constraints, and the users

only respond to common prices from the LSE, without

coordinating among themselves or knowing the cost functions

of the LSE.

With renewable generation, the uncertainty precludes pure

scheduling and calls for real-time consumptions decisions

that adapt to the realization of the random renewable gener-

ation. Moreover, this must be coordinated with procurement
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decisions over two timescales to maximize the expected

welfare. Motivated by this, we aim to design distributed

algorithms for optimal energy procurement and demand

response with renewable supply and understand the impact

of uncertainty on the optimal welfare. In [2], we have started

this effort with a focus on the case when user demand is

not time-correlated. In that case, each time period can be

optimized independently. In this paper, we will elaborate on

the case when the demand is time-correlated (meaning that

the amount of consumption in one period affects the future

consumption requirement). Specifically, we will formulate a

dynamic program, propose a distributed algorithm, and evalu-

ate its performance both analytically and through simulations.

We will also study the impact of renewable energy on the

maximum social welfare with time-correlated demand.

II. MODEL AND PROBLEM FORMULATION

In this section, we present the mathematical model and

problem formulation. The user and supply models have been

presented in [2], but they are also included here (Section II-A

and II-B) for completeness.

Consider a set N of N users that are served by a single

load-serving entity (LSE). We use a discrete-time model with

a finite horizon that models a day. Each day is divided into T
periods of equal duration, indexed by t ∈ T = {1, 2, · · · , T}.

The duration of a period can be 5, 15, or 60 mins, corre-

sponding to the time resolution at which energy dispatch or

demand response decisions are made.

A. User model

Each user i ∈ N operates a set Ai of appliances such

as HVAC (heat, ventilation, air conditioner), refrigerator, and

plug-in hybrid electric vehicle. For each appliance a ∈ Ai

of user i, qia(t) denotes its energy consumption in period

t ∈ T , and qia the vector (qia(t),∀t) over the whole day. An

appliance a is characterized by:

• a utility function Uia(qia) that quantifies the utility user

i obtains from using appliance a (where Uia(qia) is

continuously differentiable and concave);

• consumption constraints: the vector of power qia satis-

fies the linear inequality

Aiaqia ≤ ηia (1)

where Aia is a Kia ×T matrix and ηia is a Kia-vector.

This model is quite flexible. In [1], by unifying several

models in the literature, we specified the utility functions

and linear consumption constraints of different types of

appliances (such as those mentioned above). A concrete

example will be given later in Eq. (6), (7), and (8).

B. Supply model

We now describe a simple model of the electricity markets.

The LSE procures power for delivery in each period t,
in two steps. First, one day in advance, it procures “day-

ahead” capacities Pd(t) for each period t of the day under

consideration, and pays for the capacity costs cd(Pd(t); t).
The renewable power in each period t is a nonnegative

random variable Pr(t) and it costs cr(Pr(t); t). It is desirable

to use as much renewable power as possible; for notational

simplicity only, we assume cr(P ; t) ≡ 0 for all P ≥ 0 and

all t. Then at time t− (real time), the random variable Pr(t)
is realized and used to satisfy demand. The LSE satisfies

any excess demand by some or all of the day-ahead capacity

Pd(t) procured in advance and/or by purchasing balancing

power on the real-time market. Let Po(t) denote the amount

of the day-ahead power that the LSE actually uses and

co(Po(t); t) its “operation cost” (in addition to the capacity

cost cd). Let Pb(t) be the real-time balancing power and

cb(Pb(t); t) its cost. We assume that, for each t, cd(·; t),
co(·; t) and cb(·; t) are increasing, convex, and continuously

differentiable with cd(0; t) = co(0; t) = cb(0; t) = 0.

These real-time decisions (Po(t), Pb(t)) are made by the

LSE so as to minimize its total cost, as follows. Given the

demand vector q(t) := (qia(t),∀a ∈ Ai,∀i), let Q(t) :=
∑

i,a qia(t) be the total demand and ∆(Q(t)) := Q(t)−Pr(t)
the excess demand, in excess of the renewable generation

Pr(t). Note that ∆(Q(t)) is a random variable in and before

period t− 1, but its realization is known to the LSE at time

t−. Given excess demand ∆(Q(t)) and day-ahead capacity

Pd(t), the LSE chooses (Po(t), Pb(t)) that minimizes its total

real-time cost, i.e., it chooses (P ∗
o (t), P ∗

b (t)) that solves the

problem:

cs(∆(Q(t)), Pd(t); t)

:= min
Po(t),Pb(t)

{ co(Po(t); t) + cb(Pb(t); t) | Pb(t) ≥ 0,

Po(t) + Pb(t) ≥ ∆(Q(t)), Pd(t) ≥ Po(t) ≥ 0}. (2)

Clearly P ∗
o (t) + P ∗

b (t) = ∆(Q(t)) unless ∆(Q(t)) < 0. The

total cost is

c(Q(t), Pd(t);Pr(t), t)

:= cd(Pd(t); t) + cs(∆(Q(t)), Pd(t); t). (3)

with ∆(Q(t)) = Q(t) − Pr(t).

Example: supply cost

Suppose c′b(0) > c′o(P ),∀P ≥ 0, i.e., the marginal cost

of balancing power is strictly higher than the marginal

operation cost of day-ahead power, the LSE will use the

balancing power only after the day-ahead power is exhausted,

i.e., Pb(t) > 0 only if ∆(Q(t)) > Pd(t). The solution

cs(∆(Q(t)), Pd(t); t) of (2) in this case is particularly simple

and (3) can be written explicitly in terms of cb, co, cb:

c(Q(t), Pd(t);Pr(t), t) = cd(Pd(t); t) +

co

(

[∆(Q(t))]
Pd(t)
0 ; t

)

+ cb

(

[∆(Q(t)) − Pd(t)]+ ; t
)

.

(4)

i.e., the total cost consists of the capacity cost cd, the energy

cost co of day-ahead power, and the cost cb of the real-time

balancing power.
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C. Problem formulation: welfare maximization

Recall that q := (q(t), t ∈ T ) and Q(t) :=
∑

i,a qia(t).
The social welfare is the standard user utility minus supply

cost:

W (q, Pd;Pr) :=
∑

i,a

Uia(qia) −
T
∑

t=1

c(Q(t), Pd(t);Pr(t), t)

(5)

where Pd := (Pd(t), t ∈ T ) and Pr := (Pr(t), t ∈ T ).
Recall that the LSE’s objective is not to maximize its

profit through selling electricity, but rather to maximize the

expected social welfare. Given the day-ahead decision Pd,

the real-time procurement (Po(t), Pb(t)) is determined by

the simple optimization (2). This is most transparent in (4)

for the special case: the optimal decision is to use day-

ahead power P ∗
o (t) to satisfy any excess demand ∆(Q(t))

up to Pd(t), and then purchase real-time balancing power

P ∗
b (t) = [∆(Q(t)) − Pd(t)]+ if necessary. Hence the

maximization of (5) reduces to optimizing over day-ahead

procurement Pd and real-time consumption q in the presence

of random renewable generation Pr(t). It is critical that,

in the presence of uncertainty, q(t) should be decided after

Pr(t) have been realized at times t− (i.e., real-time demand

response). Pd however must be decided a day ahead before

Pr(t) are realized. Therefore, the day-ahead procurement and

the real-time demand response must be coordinated over two

timescales to maximize the expected welfare. The optimal

policy is the solution a dynamic programming problem, as

detailed below.

Social welfare maximization as a (T +1)-stage dynamic

program

Consider a time horizon of T +1 slots1: slot 0, 1, 2, . . . , T .

Slot 0 corresponds to “day-ahead”. At this time, the LSE

needs to decide Pd(t), t = 1, . . . , T , based on the distribution

of {Pr(t), t = 1, . . . , T}. Slot 1, . . . , T are the actual time

slots in the day. In slot t, the users decide their consumption.

To simplify the notation we use without loss of generality

a simplified user model where each user i has a single

appliance (e.g., an electric vehicle), so we drop the subscript

a. Also assume that the utility functions are additive in time,

Ui(qi) =
∑

t

Ui(qi(t); t), (6)

and the consumption constraints are

q
i
(t) ≤ qi(t) ≤ qi(t), ∀i (7)
∑T

t=1 qi(t) ≥ Qi, ∀i (8)

That is, the consumption in each period is in some range,

and the total consumption must exceed Qia. If the appliance

cannot use electricity in some period t′, then we can define

q
ia

(t′) = qia(t′) = 0. Clearly, constraints (7) and (8) are

linear and can be written in the form of (1).

For convenience, we further assume that c′b(0) >
c′o(P ),∀P ≥ 0. As explained in Section II-B, the total cost

1Throughout the paper, “slot” means “period”.

c in the welfare function (5) is then given by (4). We now

describe the dynamic program.

The input in slot 0 is v(0) = Pd = (Pd(τ), τ =
1, . . . , T ) ∈ ℜT

+. For t = 1, . . . , T , the inputs v(t) = q(t) ∈
[q(t), q(t)] where q(t) := (q

i
(t),∀i) and q(t) := (qi(t),∀i).

The system state x(t) := (x1(t), x2(t), x3(t)) consists of

three components of appropriate dimensions such that

x(t) = (Pd, x
2(t), Pr(t)), t = 1, . . . , T

where x2(t) is determined by the consumption constraints.

The constraint (8) motivates a state variable x2
i (t) that tracks

remaining demand for user i at the beginning of each period

t: define x2
i (0) = 0, x2

i (1) = Qi, and for each t = 1, . . . , T ,

x2
i (t+1) = x2

i (t)−vi(t) where vi(t) = qi(t). To enforce that

x2(T +1) ≤ 0N , we define a terminal cost cT+1(x(T +1)) =
0 if x2(T + 1) ≤ 0N and cT+1(x(T + 1)) = ∞ otherwise,

where 0n is the n-dimensional zero vector.

Let the initial state be x(0) = 0T+N+1. Denote Q :=
(Qi,∀i). The system dynamics is then linear time-varying:

x(1) = x(0) +

(

IT

0(N+1)×T

)

v(0) +





0T

Q
Pr(1)



 (9)

x(t + 1) =

(

IT+N 0T+N

0T+N 0

)

x(t) −





0T×N

IN

0



 v(t)

+

(

0T+N

1

)

Pr(t + 1), ∀1 ≤ t ≤ T (10)

where In is the n × n identify matrix, 0m×n is the m × n
zero matrix, and Pr(T + 1) := 0.

The welfare in each period, under input sequence v, is

(using (4))

W v
0 (x(0), v(0)) := −

T
∑

τ=1

cd(Pd(τ); τ)

= −
T
∑

τ=1

cd([v(0)]τ ; τ) (11)

and for t = 1, . . . , T ,

W v
t (x(t), v(t))

:=
∑

i

Ui(qi(t); t) − co

(

[Q(t) − Pr(t)]
Pd(t)
0 ; t

)

−cb

(

[Q(t) − Pr(t) − Pd(t)]+ ; t
)

=
∑

i

Ui(vi(t); t) − co

(

[

1v(t) − x3(t)
][x1(t)]t

0
; t
)

−cb

(

[

1v(t) − x3(t) − [x1(t)]t
]

+
; t
)

(12)

where 1 is the (row) vector of 1’s.

Let φ := {φ0 : ℜT+N+1 → ℜT
+, φt : ℜT+N+1 →

[q(t), q(t)], t = 1, . . . , T} be the control policy so that

v(t) = φt(x(t)), 0 ≤ t ≤ T . We assume that the

joint distribution of {Pr(τ), τ = 1, . . . , T} is known. The
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objective is to choose a control policy φ that maximizes the

expected welfare:

max
φ

E
(

∑T
t=0 W v

t (x(t), v(t)) − cT+1 (x(T + 1))
)

(13)

where the state x(t) and the input v(t) are obtained under

policy φ even though this is not explicit in the notation.

Reference [1] also gives a dynamic-programming formu-

lation with more general utility functions and consumption

constraints.

III. ONLINE ALGORITHM

A. Algorithm

We propose the following algorithm to solve (13). The

algorithm provides an exact solution to the dynamic program-

ming in certain cases and is a heuristic algorithm otherwise.

Algorithm 1: Real-time demand response with uncertain

renewable energy

We use P ∗
d to denote the choice of day-ahead energy and

q∗(t) := (q∗i (t),∀i), t = 1, 2, . . . , T to denote the choice of

demand in slot t under Algorithm 1.

1) One day ahead, determine the day-ahead energy

P ∗
d (t), t = 1, 2, . . . , T as follows. Solve the (determin-

istic) optimization problem

maxq,Pd≥0 W (q, Pd; P̄r)

s.t. (7), (8) (14)

where W is the welfare function defined in (5) (but

with the subscript a dropped), q = (qi(t),∀i, t), and

P̄r = E(Pr) with Pr = (Pr(t),∀t ∈ T ). In other

words, we maximize the social welfare assuming that

the renewable energy is fixed at P̄r. Let the solution of

(14) be (q̃, P̃d). Use P̃d as the day-ahead energy, i.e.,

let P ∗
d = P̃d.

2) Let t = 1.

3) In period t, determine the consumption of each user

in this period as follows. Note that at this time

{Pr(τ), 0 ≤ τ ≤ t} have been observed by the LSE.

So, the conditional distribution of {Pr(τ), τ > t} is

known. Denote

P̄ t
r := E(Pr|Pr(τ),∀τ ≤ t).

Solve the following problem:

maxq W (q, P ∗
d ; P̄ t

r )

s.t. (7), (8)

qi(τ) = q∗i (τ),∀τ < t,∀i (15)

where q∗i (τ), τ < t is the consumption of user i in slot

τ < t that is already decided in the earlier slot τ . That

is, we maximize the social welfare, given the decisions

already made before slot t (i.e., P ∗
d and q∗i (τ),∀τ <

t,∀i) and the current Pr(t), and assuming that future

renewable energy is fixed at P̄ t
r (τ), τ > t.

Let the solution of (15) be q̃t. Use q̃t(t) as the

consumption in slot t, i.e., let q∗(t) = q̃t(t). Finally,

choose P ∗
o (t) = [

∑

i q∗i (t) − Pr(t)]
P∗

d
(t)

0 , and the real-

time energy as P ∗
b (t) = [

∑

i q∗i (t) − Pr(t) − P ∗
d (t)]+.

4) If t < T , increment t and repeat step 3.

Distributed implementation of Algorithm 1:

Step 1 and 3 of Algorithm 1 needs to solve deterministic

optimization problems (14) and (15). This can be done using

a distributed gradient projection method, without requiring

the LSE and users exchange their private information (cost

functions and utility functions). The method is also used in

Algorithm 1 in [1] for the case without random renewable

energy. For completeness, we write down the algorithm for

solving (14). The algorithm for solving (15) is similar.

For each iteration k = 1, 2, . . ., after initialization:

1) The LSE collects demand forecasts, denoted by

(qk
i (t), ∀t), from all users i over a communica-

tion network. It sets the prices to the marginal costs

πk(t) := ∂c
∂Q(t) (Q(t), P k

d (t); P̄r(t), t) |
Q(t)=

∑

i
qk

i
(t)

and broadcasts (πk(t),∀t) to all users. Also, the LSE

updates its plan of day-ahead energy according to

P k+1
d (t) = [P k

d (t) −

γk

∂c

∂P k
d (t)

(
∑

i

qk
i (t), P k

d (t); P̄r(t), t)]
Pmax

0 ,∀t

where Pmax :=
∑

i qi(t), and γk > 0 is the step size.

2) After receiving πk, each user i computes

q̂k+1
i (t) := qk

i (t) + γk

(

∂Ui

(

qk
i (t); t

)

∂qk
i (t)

− πk(t)

)

,

∀t ∈ T

and updates its demand forecasts qk+1
i according to

qk+1
i = [q̂k+1

i ]Qi

where q̂k+1
i = (q̂k+1

i (t),∀t ∈ T ) and [·]Qi
denotes

the projection onto the feasible set Qi specified by

constraints (7)–(8).

3) Increment iteration index to k + 1 and go to Step 1.

Since this is a gradient projection algorithm, it is not difficult

to show that if the step size γk = 1/k,∀k, the algorithm

converges to the optimal solution of (14), assuming that Ui

is strictly concave and cd is strictly convex.

B. Performance analysis

We first show that under certain conditions, Algorithm 1

provides the optimal solution for our dynamic programming

problem.

Proposition 1: Algorithm 1 provides the optimal solution

for the dynamic programming problem if the following

conditions hold:

(i) The cost functions are quadratic: cd(P ; t) = atP
2+btP

and cb(P ; t) = a
′

tP
2 + b

′

tP where at, a
′

t > 0. For simplicity

assume that co(P ; t) = 0. The utility function is also

quadratic Ui(qi(t); t) = âtq
2
i (t) + b̂tqi(t) + ĉt where ât < 0.

(ii) Constraint (8) is replaced by an equality constraint
∑T

t=1 qi(t) = Qi,∀i. (Accordingly, problems (14) and (15)

need to use the constraint as well.)
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(iii) For any realization of Pr, when solving problem (14)

in Algorithm 1, constraint (7) and Pd ≥ 0 are not active, and

P̃ 0
b (τ) := [

∑

i q̃i(τ) − P̄r(τ) − P ∗
d (τ)]+ > 0,∀1 ≤ τ ≤ T .

When solving problem (15), the constraints (7) are never

active, and P̃ t
b (τ) := [

∑

i q̃t
i(τ)−P̄ t

r (τ)−P ∗
d (τ)]+ > 0,∀1 ≤

t, τ ≤ T .

Proof: The proof is given in Appendix A, and is related

to linear quadratic stochastic control.

If the conditions in Proposition 1 are not satisfied, we can still

use Algorithm 1 as a heuristic algorithm. The simulations in

Section V show good performance of Algorithm 1.

In this case, it is also interesting to analytically quantify

the performance gap between Algorithm 1 and the optimal

dynamic-program solution. This task, however, is not easy in

general. For notation convenience, in this paper we present

the performance gap in a simple setting. The techniques

can also be applied to bound the performance gap in other

settings.

Proposition 2: Assume that cd(P ; t) = cb(P ; t) = 1
2P 2

and co(P ; t) = 0 for all t and P ≥ 0. Assume that there is

only one user with index 1. In the consumption constraint (7)

with i = 1, assume that q
1
(t) = 0 and q1(t) = +∞. That

is, the constraint is q1(t) ≥ 0. Also assume that the utility

function U1(q1(t); t) = 0,∀t, q1(t). Therefore, our problem

is to supply at least Q1 amount of energy to user 1 with

the minimal expected cost. Finally, assume that Pr(t) are

independent across t, and that
∑

t E(Pr(t)) < Q1.

Let J and J∗ be the expected welfare achieved by

Algorithm 1 and the optimal dynamic-program solution,

respectively. Then the following bound holds:

J∗ −
T
∑

t=1

1

T − t + 1
σ2(t) ≤ J ≤ J∗,

where σ2(t) is the variance of Pr(t). (For example, if σ2(t) =
σ2,∀t, then the performance gap is bounded by log(T ) ·σ2.)

Proof: See Appendix B.

C. Extension of Algorithm 1 to the general user model

In our general user model in section II-A, a user can

have multiple appliances, and for each appliance, the utility

function may not be separable in t, and the consumption

constraints can be different from (7) and (8).

However, it is not difficult to extend Algorithm 1 to

the more general case. Specifically, we can simply modify

problem (14) and (15), by plugging in the general welfare

function (5) and replacing the constraints (7) and (8) with

(1). The extended algorithm admits similar distributed imple-

mentation. On the other hand, its performance analysis (for

example, bounding the optimality gap) may be more difficult.

IV. IMPACT OF RENEWABLE ENERGY ON THE OPTIMAL

COST

An important element in our model is the uncertain renew-

able energy. In the future, the penetration of renewable energy

and its impact are expected to increase. In this section, we

investigate how the statistics of the renewable energy affects
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Fig. 1: Target demand profiles of the users

the achievable social welfare in our model. For simplicity,

assume that the amounts of renewable energy in different

slots are independent. Assume that the renewable energy is

parametrized by a ≥ 0 and b ≥ 0 as follows.

Pr(t; a, b) = a · µr(t) + b · Vr(t) ≥ 0,∀t

where µr(t) is a constant, and Vr(t) is a zero-mean random

variable. So, a and b indicate the mean and variance, respec-

tively, of the renewable energy. In particular, E[Pr(t; a, b)] =
a · µr(t), and var[Pr(t; a, b)] = b2E[V 2

r (t)].
Let J∗(a, b) be the maximal expected welfare (resulting

from the dynamic program (13)) when the renewable energy

is Pr(t; a, b) for all t. Then we have the following results.

Proposition 3: (i) If b ≥ 0 is fixed, J∗(a, b) is non-

decreasing with a ≥ 0.

(ii) If a ≥ 0 is fixed, J∗(a, b) is non-increasing with b ≥ 0.

(iii) Assume that µr(t)+Vr(t) ≥ 0,∀t, so that Pr(t; s, s) =
s · [µr(t) + Vr(t)] ≥ 0,∀t,∀s ≥ 0. Then J∗(s, s) is non-

decreasing with s ≥ 0.

Remark: In other words, the maximal expected welfare

increases with the mean, decreases with the variance, and

increases with the scale of Pr.

Proof: See Appendix C.

V. NUMERICAL RESULTS

First we illustrate the characteristics of the solution given

by Algorithm 1. The setup is as follows. Let T = 24,

representing 24 hours. The first time period is 8-9am, the

second is 9-10am, and so on. The utility function of user i is

Ui(qi) =
∑T

t=1 Ui(qi(t); t) = −
∑T

t=1[qi(t) − yi(t)]
2 where

yi(t) is user i’s target consumption in slot t. That is, the

further his actual demand profile {qi(t)} deviates from the

target, the less is his utility. Fig. 1 shows the target demand

profiles of N = 4 users in our simulation. The unit of energy

is kWh.

We impose the constraint that
∑

t qi(t) ≥
∑

i yi(t). That

is, user i can shift his demand from one time period to

another, but his total consumption
∑

t qi(t) must be at least
∑

i yi(t).
Assume that Pr(t) is uniformly distributed between 0 and

2P̄r(t) > 0, so that its mean is E(Pr(t)) = P̄r(t). Also,
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Fig. 2: Numerical evaluations of Algorithm 1

Pr(t)’s are independent across t. The values of (P̄r(t),∀t)
are (2, 3, 4, 5, 5, 6, 6, 7, 6, 5, 4, 3, 2, 2, 3, 4, 4, 4, 4, 3, 3, 2,

2, 2). For each time period, assume that the cost functions are

cd(P ) = (P 2 + P )/2, co(P ) = P/2, and cb(P ) = P 2/2 +
5P .

We run Algorithm 1 and obtain the consumption of each

user. Under one realization of {Pr(t)}, Fig. 2 (a) shows the

total target load (of the 4 users), the total actual consumption,

and the realization of {Pr(t)}. We observe that

• The consumption tends to follow the trend of target

demand profile;

• but through demand response, the users tend to oppor-

tunistically use the available renewable energy, and at

the same time flatten their consumption.

Next, to understand Algorithm 1’s performance as compared

to the dynamic-programming solution, we compare Algo-

rithm 1 with an idealized algorithm which assumes that

the realization of (Pr(t),∀t ∈ T ) is known one day in

advance. The idealized algorithm simply chooses Pd and

q to maximize the welfare given the realization of Pr. So,

the idealized algorithm achieves even higher welfare than

the dynamic-programming solution, and our comparison is

therefore conservative. We consider different penetration lev-

els of the renewable energy. Specifically, we let the mean of

renewable energy be ρP̄r(t),∀t. For each ρ ∈ {1, 2, 3, 4}, we

repeat the simulation 30 times (each time with a realization

of the renewable energy) and compute the average welfare

(as an approximation of the expected welfare). The average

welfare achieved by Algorithm 1 and the idealized algorithm

is shown in Fig. 2 (b). Note that the average renewable

energy is 15.36% of the total target demand when ρ = 1,

and is 61.45% when ρ = 4. Algorithm 1 achieves reasonable

performance even when the penetration of renewable energy

is high.

VI. CONCLUSION

In this paper, we have studied multi-period energy procure-

ment and demand responses in the presence of uncertain sup-

ply of renewable energy. We have provided a decentralized

algorithm with two-way communications for the load-serving

entity and the users, aiming to efficiently use the grid and

maximize social welfare. We have studied the performance of

the algorithm through both analysis and simulations. We have

provided insight on the effect of clean, but random renewable

energy on the social welfare.

Here, we have focused on one type of utility functions and

consumption constraints. In the future, we will incorporate

other types of appliances as well, such as those modeled in

[1]. Note that Algorithm 1 can be easily extended to that case.

The challenges lie in understanding its performance in more

general settings, and possibly designing more efficient algo-

rithms. Also, we are interested in considering the case with

distributed renewable generations on the user side, which will

become more common in the future, and investigate how

that changes the structure of optimal energy procurement and

demand response strategies.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: Consider a dynamic-programming problem,

called DP2, modified from our DP considered in this

proposition. Specifically, we remove the constraints Pd ≥
0 and (7), use the constraint

∑T
t=1 qi(t) = Qi as as-

sumed, and change the cost cb

(

[Q(t) − Pr(t) − Pd(t)]+ ; t
)

to cb (Q(t) − Pr(t) − Pd(t); t). Accordingly, we expand the

ranges of cd(P ; t) and cb(P ; t) to P ∈ (−∞,∞). Since

we have assumed co(·; t) = 0, DP2 is a linear quadratic

stochastic control problem.

We first show that Algorithm 1 provides the optimal solu-

tion of DP2. Note that this result is standard if {Pr(t)} are

independent of each other, using the “certainty equivalence

principle”. Since in general {Pr(t)} are correlated, we need

the following proof to show the result.

We expand the state of renewable energy at time t− into

x3(t) = E(Pr|Pr(τ), τ ≤ t) where Pr = (Pr(t), t =
1, 2, . . . , T ). Note that the first t elements of x3(t) are the

observed renewable energy in the first t slots, and the other

elements are conditional expectations of future renewable

energy. Denote P̄ t
r := E(Pr|Pr(τ), τ ≤ t) = x3(t).

The overall state evolves linearly as follows:

x(t + 1) = Ct · x(t) + Dt · v(t) + Ft · P̄
t+1
r
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with proper matrices Ct,Dt and Ft.

Since the utility functions ui(·; t) and cost functions

cd(·; t), cb(·; t) are quadratic by assumption (and co(·; t) =
0), the optimal welfare in the last stage is a quadratic form

involving x(T ):

JT (x(T )) = x(T )
′

PT · x(T ) + ĀT x(T ) + KT . (16)

where PT , ĀT are constant matrices, and KT is a constant

scalar.

So,

JT−1(x(T − 1))

= max
v

{(AT−1 · x(T − 1) + GT−1v)
′

PT−1(AT−1 ·

x(T − 1) + GT−1v) + [ĀT−1x(T − 1) + ḠT−1v]

+KT−1 + ET−1[JT (CT−1 · x(T − 1) +

DT−1 · v + FT−1 · P̄
T
r + hT−1)]} (17)

where ET−1(·) denotes the conditional expectation given

Pr(τ), τ ≤ T − 1, and AT−1, GT−1, . . . are all constant

matrices or scalars.

Note that ET−1(P̄
T
r ) = P̄T−1

r . So we can write P̄T
r =

P̄T−1
r + wT where ET−1(wT ) = 0. So

ET−1[JT (CT−1 · x(T − 1) + DT−1 · v

+FT−1 · P̄
T
r + hT−1)]

= ET−1[JT (CT−1 · x(T − 1) + DT−1 · v

+FT−1 · (P̄
T−1
r + wT ) + hT−1)].

Using (16), we have

ET−1[JT (CT−1 · x(T − 1) + DT−1 · v

+FT−1 · (P̄
T−1
r + wT ) + hT−1)]

= (ÃT−1 · x(T − 1) + G̃T−1v)
′

PT (ÃT−1 · x(T − 1) +

G̃T−1v) + [ ˜̄AT−1x(T − 1) + ˜̄GT−1v]

+K̃T + ET+1[w
′

T P̃T wT ].

Note that the RHS does not have a P̄T−1
r term because it

has been absorbed in ÃT−1 · x(T − 1). Also, note that the

last term ET+1[w
′

T P̃T wT ] is a constant.

So, the solution to the RHS of (17) is a linear function

of x(T − 1). As a result, JT−1(x(T − 1)) is quadratic in

x(T −1). Continuing the backwards induction, we know that

Jt(x(t)), t < T − 1 also has quadratic form.

In Algorithm 1, for slot t, we choose v(t) assuming

that future renewable energy is deterministically P̄ t
r . This

is equivalent to the process of doing the above backwards

induction assuming that P̄ τ
r = P̄ t

r ,∀τ > t. This process

would result in the same set of matrices Ãt, G̃t, etc, with

only the constant terms such as ET+1[w
′

T P̃T wT ] missing. So,

Algorithm 1 makes the same decision v(t) as in the optimal

solution of DP2.

Next, we claim that Algorithm 1 also gives the maximal

expected welfare to DP3, where DP3 is defined to be the same

as DP2 except that the cost for real-time energy is changed

to cb

(

[Q(t) − Pr(t) − Pd(t)]+ ; t
)

. This is true because by

assumption, Q(t) − Pr(t) − Pd(t) > 0 always holds during

the execution of Algorithm 1. Therefore, the decisions made

by Algorithm 1 satisfy the optimality conditions for DP3.

Finally, our DP considered in this proposition has more

constraints (i.e., Pd ≥ 0 and (7)) than DP3. Since Algorithm

1 gives the maximal expected welfare to DP3 without violat-

ing the extra constraints, it also gives the maximal expected

welfare to our DP.

APPENDIX B

PROOF OF PROPOSITION 2

Proof: Consider an idealized algorithm which knows

the realization of Pr(t),∀t in advance, and chooses Pd and

q1(t),∀t as follows to maximize the welfare.

Wideal(Pr) :=

maxPd≥0,q1

T
∑

t=1

[−cd(Pd(t); t) −

cb([q1(t) − Pd(t) − Pr(t)]+; t)]

s.t. q1(t) ≥ 0,

T
∑

t=1

q1(t) ≥ Q1. (18)

Equivalently, this can be written as

Wideal(Pr) :=

maxPd,Pb,q1

T
∑

t=1

[−cd(Pd(t); t) − cb(Pb(t); t)]

s.t. q1(t) ≥ 0,∀t,

T
∑

t=1

q1(t) ≥ Q1,

Pd, Pb ≥ 0,

Pr(t) + Pd(t) + Pb(t) ≥ q1(t),∀t. (19)

The idealized algorithm performs better than the optimal

dynamic-programming solution (because for each realization

of {Pr(t)}, the idealized algorithm performs better). From

(19), it is easy to see that Wideal(Pr) is concave in Pr. So,

J∗ ≤ E(Wideal(Pr)) ≤ Wideal(P̄r)

where P̄r = E(Pr). Since
∑

t P̄r(t) < Q1 by assumption,

we have

Wideal(P̄r) = −2T ·
1

2
([

Q1 −
∑

t P̄r(t)

2T
]2

= −
[Q1 −

∑

t P̄r(t)]
2

4T
.

Therefore

J∗ ≤ −
[Q1 −

∑

t P̄r(t)]
2

4T
. (20)

Now we provide a lower bound of J . First, note that in

Algorithm 1, the day-ahead energy is chosen as P ∗
d (t) =

Q1−
∑

τ
P̄r(τ)

2T
,∀t. In slot t, the real-time energy is chosen as

P ∗
b (t) = [

Q1−
∑

t−1

τ=1
q∗

1 (τ)−Pr(t)−
∑

T

τ=t+1
P̄r(τ)

T−t+1 ]+ and q∗1(t) =
Pr(t) + P ∗

d (t) + P ∗
b (t).
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Consider an algorithm (called Algorithm 2) which follows

the similar equations (where P ∗∗
d (t), P ∗∗

b (t) and q∗∗1 (t)
denote its decisions):

P ∗∗
d (t) =

Q1 −
∑

τ P̄r(τ)

2T
,∀t (21)

and for t = 1, 2, . . . , T ,

P ∗∗
b (t) =

Q1 −
∑t−1

τ=1 q∗∗1 (τ) − Pr(t) −
∑T

τ=t+1 P̄r(τ)

T − t + 1
, (22)

q∗∗1 (t) = Pr(t) + P ∗∗
d (t) + P ∗∗

b (t). (23)

Note that the only difference from Algorithm 1 is that here

we don’t confine P ∗∗
b (t) to be non-negative, and we define

cb(P ; t) = 1
2P 2 for any P ∈ (−∞,∞) for Algorithm 2.

We can show that J2, the expected welfare achieved by

Algorithm 2, satisfies that

J2 ≤ J. (24)

For brevity, the proof is omitted. (But the idea is that, if in

slot t Algorithm 2 chooses a negative P ∗∗
b (t), it incurs more

cost in slot t than Algorithm 1 which chooses P ∗
b (t) = 0,

and also leaves more remaining demand than Algorithm 1.)

Also, by (21)–(23), we can compute that

P ∗∗
b (t) =

Q1 −
∑

t P̄r(t)

2T
+

t
∑

τ=1

P̄r(τ) − Pr(τ)

T − τ + 1
,∀t.

So,

J2 = −E{T
1

2
[
Q1 −

∑

t P̄r(t)

2T
]2 +

T
∑

t=1

1

2
[
Q1 −

∑

t P̄r(t)

2T
+

t
∑

τ=1

P̄r(τ) − Pr(τ)

T − τ + 1
]2}

= −{T
1

2
[
Q1 −

∑

t P̄r(t)

2T
]2 + T

1

2
[
Q1 −

∑

t P̄r(t)

2T
]2

+

T
∑

τ=1

σ2(τ)

T − τ + 1
}

= −
[Q1 −

∑

t P̄r(t)]
2

4T
−

T
∑

τ=1

σ2(τ)

T − τ + 1

≥ J∗ −
T
∑

τ=1

σ2(τ)

T − τ + 1

using (20). Combining this with (24), we complete the proof.

APPENDIX C

PROOF OF PROPOSITION 3

Proof: (i) With b fixed, consider two constants a2 > a1.

Assume that when a = a1, the optimal policy is φ(a1,b).

When a = a2, we construct a policy φ
′

according to φ(a1,b),

as follows. Note that Pr(t; a2, b) > Pr(t; a1, b). Let policy

φ
′

follow the same action of φ(a1,b), pretending that the

renewable energy is Pr(t; a1, b) (which is smaller than the

actual Pr(t; a2, b)). Then the expected welfare achieved by

policy φ
′

is at least J∗(a1, b). So, the optimal policy φ(a2,b)

when a = a2 achieves an expected welfare not less than

J∗(a1, b). This completes the proof.

(ii) With a fixed, consider b2 > b1. For simplicity, denote

the value function with renewable energy Pr(t; a, b1) by

Jt(x(t)), and the value function with Pr(t; a, b2) by J̄t(x(t)).
The Bellman equations for Jt(x(t)) are (where t = 0 means

“day-ahead”)

J0(x(0)) = max
v(0)≥0

{W v
0 (x(0), v(0)) + E[J1(x(0)

+Mv,0 · v(0) + MrPr(1; a, b1) + h0)]} (25)

Jt(x(t)) =

max
v(t)∈[q(t),q(t)]

{W v
t (x(t), v(t)) + E[Jt+1(Mx · x(t)

−Mv · v(t) + MrPr(t + 1; a, b1))]},∀1 ≤ t < T (26)

where W v
t (x(t), v(t)), t = 0, 1, . . . , T is defined in (11) and

(12), the constant matrices Mv,0,MrMx,Mv and vector h0

correspond to those in the RHS of (9) and (10). We define

that

Pr(T + 1) := 0; JT+1(.) = −cT+1(·).

Similar equations hold for J̄t(x(t)).
We will prove, by induction, that for any 0 ≤ t ≤ T

Jt(x(t)) ≥ J̄t(x(t)), (27)

and that Jt(·) and J̄t(·) are concave. First, it is not difficult

to see that JT (x(T )) = J̄T (x(T )) (therefore (27) holds for

t = T ), and JT (·), J̄T (·) are concave. Assume that (27) holds

for 2 ≤ t+1 ≤ T , and Jt+1(·), J̄t+1(·) are concave, we show

that these also hold for t. To see this, note that

Jt+1(Mxx(t) − Mvv(t) + MrPr(t + 1; a, b1))

≥ J̄t+1(Mxx(t) − Mvv(t) + MrPr(t + 1; a, b1)).

So

E{Jt+1(Mxx(t) − Mvv(t) + MrPr(t + 1; a, b1))}

≥ E{J̄t+1(Mxx(t) − Mvv(t) + MrPr(t + 1; a, b1))}

≥ E[J̄t+1(Mxx(t) − Mvv(t) + MrPr(t + 1; a, b2))]

where the first “≥” follows from the previous inequality,

and the second “≥” holds because J̄t+1(·) is concave, and

b2 > b1. Using this relation and Eq. (26) (and its analogy for

J̄t(rt)), we know that (27) holds for t ≥ 1.

Note that in (26), the expression inside “max” is concave

in (x(t), v(t)). Therefore Jt(·) is concave, and so is J̄t(·).
The above results similarly hold for t = 0. Therefore,

J∗(a1, b) = J0(0T+N+1) ≥ J̄0(0T+N+1) = J∗(a2, b).
(iii) Since µr(t)+Vr(t) ≥ 0, we know that if s2 > s1 ≥ 0,

then Pr(t; s2, s2) ≥ Pr(t; s1, s1). The rest of the proof is

similar to (i).
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